Этанол: свойства и применение. Отрицательные следствия метаболизма этанола Этиловый спирт в медицине

Компоненты коньячного спирта делятся на вещества, переходящие при перегонке из виноматериалов, и на вещества, образованные при выдержке в дубовых бочках. Последняя система классификации этих компонентов рассматривает вещества, перешедшие при перегонке виноматериалов вместе с летучими веществами, а вещества, образованные при выдержке – с нелетучими.

Летучие вещества.

Главным компонентом коньячного спирта является этиловый спирт и вода. Остальные вещества следует рассматривать как примеси к этим двум основным компонентам. Высококачественный коньячный спирт в своем составе должен иметь определенный минимум летучих примесей (в противном случае такой коньячный спирт считается ректифицированным). Следует отметить, что чрезмерно большое количество летучих примесей ухудшает качество коньячного спирта.

В коньячных спиртах, кроме этилового спирта, найдено некоторое количество других алифатических спиртов: метанол, пропиловый, бутиловый, изобутиловый, амиловый, изоамиловый и другие спирты.

Метиловый спирт (СН4ОН) характеризуется следующими показателями: молекулярная масса 32,04; плотность ρ=0,7913; температура плавления 97,7 оС, температура кипения 64,7 оС.

Метиловый спирт (метанол) - это бесцветная жидкость, в чистом виде ее запах напоминает этанол, смешивается с водой в любых соотношениях, хорошо растворяется во многих органических растворителях. Метанол – это отравляющая жидкость, вдыхание его паров также вредно, как и прием внутрь. В пищевых продуктах и напитках допускается не более 0,1 % об.

В грузинских и молдавских коньячных спиртах метанола содержится от следов до 0,08 %. В коньячных спиртах из красных виноматериалов количество метилового спирта заметно выше (в два раза и больше), чем в белых. Коньячные спирты, полученные по кахетинской технологии (выдержка на гребнях), содержит метанола 296...336 мг/дм3, что два раза выше, чем из виноматериалов, полученных по европейской технологии (136...288 мг/дм3).

Коэффициент ректификации метанола меньше единицы, поэтому при перегонке коньячных виноматериалов он переходит в хвостовую фракцию. В процессе окисления перманганатом калия метиловый спирт переходит в муравьиный альдегид, дающий с фуксинсернистой кислотой (лучше хромотроповая кислота) стойкий фиолетовый цвет. Такая реакция может быть использована при качественном определении метанола в спиртовых напитках.

Этиловый спирт (этанол, С2Н5ОН) имеет молекулярную массу 46,07, плотность ρ=0,789, температуру кипения 78,35 оС и температуру плавления 114,5 оС. Это главный продукт спиртового брожения сахаров с характерным слабым запахом, бесцветная жидкость. С водой смешивается в любых соотношениях. При содержании 95,57 % мас. спирт кипит и перегоняется при постоянной температуре 78,15 оС.

Из химических свойств этилового спирта необходимо отметить следующие реакции: он легко замещает водород в гидроксильной группе на металл, легко образует алкоголят натрия и алкоголят алюминия, с кислотами образует сложные эфиры, а с альдегидами – полуацетали и ацетали. Окисление этанола в ацетальдегид происходит под действием растворимого в спирте кислорода. Этиловый спирт легко окисляется двуххромовокислым калием, перманганатом и другими окислителями, используемыми при количественном определении спирта. Растворимость кислорода в спирте в несколько раз выше, чем в воде (в связи с образованием эмульсии). Этиловый спирт в парообразном состоянии с воздухом образует горючие взрывные смеси. Так при концентрации паров спирта в воздухе, равной 3,28 %, смесь взрывается. Кроме того, пары спирта при постоянном вдыхании вредны для организма человека. Запах этилового спирта при концентрации 0,25 мг/дм3 легко ощущается в воздухе.

Высшие спирты.

В виноделии и коньячном производстве высшие спирты рассматривают как сумму алифатических спиртов с содержанием углеродных атомов больше трех. Это пропиловый, бутиловый, амиловый, гексиловый, гептиловый, октиловый, нониловый и другие спирты, и их изомеры. В винах и коньяках их, в основном, определяют суммарно. Применяя современные приборы и хроматографию, их начали разделять на отдельные компоненты.

Пропиловый спирт (С3Н6ОН) имеет молекулярную массу 60,09, плотность ρ=0,8036, температуру плавления 126,1 оС, температуру кипения 97,2 оС. Он легко смешивается с водой, этиловым спиртом, бензолом и эфиром.

Бутиловый спирт (С4Н9ОН) имеет молекулярную массу 74,0, плотность ρ=0,80978, температуру кипения 117,4 оС. В холодной воде растворяется до 9 % при 15 оС.

Изобутиловый спирт (С4Н11ОН) имеет молекулярную массу 74,0, плотность ρ=0,802, температуру кипения 108,1 оС. В воде изобутиловый спирт растворяется в количестве около 10 % при температуре 15 оС, хорошо растворяется в спирте, эфире и бензоле.

Амиловый спирт (С5Н11ОН) имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 137,8 оС.

Изоамиловый спирт (С5Н11ОН) – оптически не активный, имеет молекулярную массу 88,15, плотность ρ=0,814, температуру кипения 132,1 оС. Представляет собой маслянистую жидкость с очень характерным неприятным запахом. Пары изоамилового спирта раздражают слизистую оболочку и вызывают кашель. Он плохо растворяется в воде, но хорошо растворяется в эфире, спирте и бензоле.

Изоамиловый спирт (С5Н11ОН) – оптически активный, имеет молекулярную массу 88,15, плотность ρ=0,819, температуру кипения 129,4 оС. Представляет собой также маслянистую жидкость, имеющую более резкий запах, чем неактивный изоамиловый спирт.

Оба изоамиловых спирта составляют наиболее значительную часть сивушных масел, при этом активного спирта содержится немного меньше.

Все высшие спирты являются основными незаменимыми компонентами летучих примесей коньячных спиртов. Их содержание колеблется в пределах 1000...3000 мг/дм3.

Образование высших спиртов при брожении виноградного сусла зависит от многих факторов: расы дрожжей, условий брожения (аэробные или анаэробные) и др. Заметно влияет на образование высших спиртов в бродящем сусле величина рН. При рН 2,6 зафиксировано минимальное количество высших спиртов. При рН 4,5 содержание высших спиртов увеличивается в два раза, а при дальнейшем увеличении рН содержание высших спиртов слабо снижалось.

Заметно влияет на образование высших спиртов и температура среды (при температуре брожения от 15 до 35 оС). Максимум образования высших спиртов установлен при температуре 20 оС, а при температуре брожения 35 оС количество высших спиртов уменьшается в четыре раза.

Влияние факторов интенсификации роста дрожжей (биотин, тиамин, пантотеновая кислота и др.) зависит от природы источников азота.

В настоящее время доказано, что сивушные спирты образуются не только из аминокислот, но также из сахаров при их сбраживании. Итак, высшие спирты могут быть как вторичными, так и побочными продуктами спиртового брожения. В целом, образование высших спиртов зависит от суммарной активности обмена дрожжей.

Таким образом, в коньячном спирте высшие спирты имеют двоякое происхождение. Первая их часть является составным компонентом эфирных масел винограда, перешедших сначала в виноматериалы, а потом в коньячный спирт при их перегонке. Другая часть обусловлена жизнедеятельностью дрожжей, образующих высшие спирты как из сахара, так и из аминокислот в результате дезаминирования или переаминирования с последующим дезаминированием.

Высшие спирты являются токсичными веществами. Эта токсичность повышается с увеличением молекулярной массы. Если токсичность этилового спирта принять за единицу, то токсичность изобутанола будет равняться четырем, а изоамилового спирта - 9,25.

С салициловым альдегидом высшие спирты дают характерный красный цвет, что используется при их количественном определении.

Органические кислоты.

В выдержанных коньячных спиртах основными кислотами являются нелетучие кислоты, образованные при экстракции компонентов дуба (аминокислоты, дубильные вещества, ароматические и полиуроновые кислоты).

Основными кислотами свежеперегнанного коньячного спирта являются кислоты жирного ряда: муравьиная, уксусная, пропионовая, масляная, валерьяновая, капроновая, энантовая, каприловая, пеларгоновая, лауриновая, миристиновая и другие органические кислоты.

Ниже в таблице приведена краткая характеристика органических кислот жирного ряда в коньячных спиртах.

Таблица Основные кислоты свежеперегнанного коньячного спирта жирного ряд а

Название кислоты

Химичес-кая формула

Молеку-лярная масса

Плот-ность, г/см3, ρ

Темпер-тура плавле-ния, оС

Темпер-тура кипения, оС

Краткая характеристика

Муравьиная

Бесцветная жидкость с едким запахом, смешивается с водой, спиртом, эфиром

Уксусная

Бесцветная жидкость с характерным запахом, растворяется в воде, спирте, эфире, бензоле

Пропионовая

Бесцветная жидкость с острым запахом, растворимая в воде, спирте, эфире

Масляная

Бесцветная жидкость, растворимая в спирте, эфире, запах неприятный

Валерьяновая

Жидкость с характерным запахом, растворяется в спирте, эфире, хуже в воде

Капроновая

Маслянистая жидкость с характерным запахом, растворяется в спирте и эфире

Энантовая

Маслянистая жидкость с характерным запахом

Каприловая

Маслянистая жидкость, растворяется в спирте и эфире, бензоле хлороформе, горячей воде

Пеларгоновая

Растворяется в спирте, эфире, бензоле

Каприновая

Лауриновая

Бесцветные иглы, растворимые в эфире, бензоле, спирте. Перегоняется с паром воды

Миристиновая

В коньячных спиртах летучих кислот содержится от 80 до 1000 мг/дм3, а иногда и больше.

Кроме органических кислот, в коньячных спиртах и коньяках встречаются и минеральные кислоты. Главным образом, это сернистая и серная, образующаяся при ее окислении. Эти кислоты присутствуют в коньячных спиртах, изготовленных из сульфитированных виноматериалов. Количество общей сернистой кислоты (в перерасчете на SO2) в свежеперегнанном спирте может достигать 240 мг/дм3.

Величина рН в коньячных спиртах и коньяках заметно колеблется в зависимости от технологии, типа и их возраста. При фракционированной перегонке рН снижается. Например, если главная фракция имела рН 6,2, то средняя фракция (до крепости 42,5 %) имеет рН 4,0, а хвостовая – 3,2. Все это зависит как от содержания кислот, так и от крепости спирта, угнетающего диссоциацию карбокисильних групп. Поэтому в более крепких водно-спиртовых растворах величина рН одной и той же кислотности выше, чем в слабых растворах.

Наиболее резко изменяется рН в коньячных спиртах и коньяках в первые два года выдержки. Начиная с 10 лет выдержки рН практически не изменяется в пределах 4,1...4,0.

Сложные эфиры.

Основную часть эфиров в коньячных спиртах и коньяках представляют этиловые эфиры жирных кислот, содержание которых, в большинстве случаев, колеблется от 300 до 1600 мг/дм3. К ним, в основном, относятся муравьиноэтиловый и уксусноэтиловый эфиры.

Муравьиноэтиловый эфир (С3Н6О) имеет молекулярную массу 74, плотность 0,91678 г/см3, температуру кипения 54,3 оС. В воде легко растворяется при температуре 25 оС.

Уксусноэтиловый эфир (этилацетат) (С4Н8О2) имеет молекулярную массу 88,10, плотность 0,9006 г/см3, температуру плавления – 83,6 оС, температуру кипения – 77,1 оС. Это бесцветная жидкость с эфирно-фруктовым запахом. В любых соотношениях смешивается с многими органическими растворителями (спиртом, эфиром, бензолом и др.).

Кроме этих эфиров в коньячных спиртах и коньяках найдены такие этиловые эфиры жирных кислот: этилпропианат (С7Н12О), этилбутират (С7Н12О2), этилвалерианат (С7Н14О2), этилкапронат (С8Н16О2), этиленантат (С9Н18О2), этилкапринат (С12Н24О2), этиллаурат (С14Н28О2)и др.

Кроме этиловых эфиров жирных кислот в коньячных спиртах найдены эфиры пропилового, бутилового, амилового, гексилового спиртов и их изомеров.

Как в коньячных спиртах, так и в коньяках главным компонентом сложных эфиров является этилацетат и энантовый эфир, образующиеся, в основном, дрожжами в процессе брожения. В зависимости от расы дрожжей или условий брожения количество энантового эфира может изменяться. В целом, содержание эфиров в коньячных спиртах и коньяках зависит от концентрации кислот и спиртов.

Очень важным свойством сложных эфиров является их способность омыляться под действием щелочей, что используется для их количественного определения.

Следует отметить, что при этом уксусноэтиловый эфир омыляется значительно легче, чем эфиры более висококипящих кислот, что используется для определения энантовых эфиров в коньячных спиртах. С гидроксиламином сложные эфиры образуют гидроксаматы, дающие в присутствии трехвалентного железа характерный темно-синий цвет.

Альдегиды и ацетали.

Количество легколетучих альдегидов (алифатических) в коньячных спиртах находится в пределах 50...500 мг/дм3 абсолютного спирта. В целом, в коньячных спиртах найдены в значительных количествах такие легколетучие альдегиды, как уксусный, пропионовый, изомасляный и изовалериановый.

Уксусный альдегид (ацетальдегид, этаналь) (С2Н4О) имеет молекулярную массу 44,05; плотность ρ=0,783 кг/дм3, температуру плавления – 122,6 оС, температуру кипения – 20,8 оС. Это бесцветная легкоподвижная жидкость с резким характерным запахом, легко смешивается с водой, спиртом и эфиром. Реагирует с бисульфитом натрия и сернистым ангидридом.

Пропионовый альдегид (С3Н6О) имеет молекулярную массу 58,08; плотность ρ=0,807 кг/дм3, температуру плавления – 81 оС, температуру кипения – 49,1 оС. Это жидкость с удушливым запахом, смешивается со спиртом и эфиром, слабо растворимая в воде.

Изомасляный альдегид (С4Н8О) имеет молекулярную массу 72,0; плотность ρ=0,794 кг/дм3, температуру кипения – 64 оС.

Изовалериановый альдегид (С5Н10О) имеет молекулярную массу 86,13; плотность ρ=1,39 кг/дм3, температуру плавления – минус 51 оС, температуру кипения – 92,5 оС.

Все альдегиды в водных растворах присоединяют воду, поэтому они не поглощают свет в ультрафиолетовой области спектра. Очень важным свойством альдегидов является их реакция с бисульфитом и сернистой кислотой. Очень чувствительны альдегиды к действию окислителей, причем они способны и к самоокислению с образованием карбоновых кислот.

Характерной реакцией для альдегидов и кислот является взаимодействие их в кислой среде с 2,4-динитрофенилгидразином с образованием 2,4- динитрофенилгидразона, дающего в щелочной среде сильную красную окраску. Эту реакцию можно использовать для количественного определения альдегидов.

В коньячных спиртах общее содержание алифатических альдегидов колеблется в пределах от 30 до 300 мг/дм3. Основную часть из них составляет уксусный. Кроме того, в коньячных спиртах встречаются кротоновый, пропионовый, изомасляный и валерьяновый альдегиды.

При выдержке коньячных спиртов увеличивается только содержание уксусного альдегида, содержание остальных алифатических альдегидов снижается.

Альдегиды с коньячными спиртами образуют ацетали с выделением двух молекул воды. Стойкость ацеталей в щелочной среде значительно выше, чем в кислой, где они быстро омыляются до начальных альдегидов и спиртов.

В целом, образование ацеталей и полуацеталей в коньячных спиртах приводит к смягчению резких тонов в букете коньяка.

Согласно закону действия масс, в коньячных спиртах и коньяках основным фактором, влияющим на концентрацию ацеталей, является содержание спирта.

Важнейшими летучими соединениями, влияющими на качественные показатели коньяка, являются бутиленгликоль, ацетоин и диацетил, количество которых в коньячных спиртах составляет: бутиленгликоля – 6,1 мг/дм3; ацетоина – 4,6 мг/дм3 и диацетила – 1,6 мг/дм3. В коньячных спиртах содержатся еще и летучие амины, являющиеся хвостовыми примесями при перегонке виноматериалов.

Нелетучие вещества (экстрактивные вещества) коньячных спиртов представляют собой компоненты, извлеченные из дубовой бочки, и продукты их химических преобразований. Количество нелетучих веществ в коньячных спиртах зависит от температуры спиртов в процессе хранения, времени выдержки в бочках, емкости бочек, состава разных спиртов и ряда других факторов.

Французские коньяки содержат экстрактивных веществ от 4,5 до 12 г/дм3, армянские – от 9,86 до 9,62 г/дм3, итальянские – до 21,5 г/дм3, грузинские (выдержанные от 2 до 22 лет) – от 1,5 до 6,0 г/дм3.

Экстрактивные вещества при выдержке коньяков подвергаются разным химическим преобразованиям, образующим ряд летучих продуктов, таких как альдегиды, кислоты и др.

При выдержке коньячных спиртов в дубовой бочке происходит мацерация спиртом лигнина дуба и продуктов его распада (ароматических альдегидов и кислот), которые в дальнейшем подвергаются разным реакциям распада и полимеризации. Продукты дальнейшего преобразования лигнина в коньячном спирте очень разнообразные. В зависимости от растворимости в воде и эфире, а также летучести, лигниновый комплекс коньячных спиртов делится на ряд фракций:

· нелетучие, водо - и эфирорастворимые;

· нелетучие водорастворимые, эфиронерастворимые;

· летучие, водо - и эфирорастворимые;

· эфирорастворимые, водонерастворимые;

· водонерастворимые и др.

Водонерастворимый лигнин представляет собой ту часть продуктов мацерации из дубовой клепки, которая при разведении спирта водой выпадает в осадок (водонерасторимая фракция). Элементарный состав такого лигнина следующий: водород – 5,67 %; углерод – 59,09 %; метоксильные группы – 11,38 % (данные Егорова И. А. и Скурихина И. М.)

Водорастворимая фракция лигнинового комплекса коньячного спирта составляет 85 % от общего количества. В состав этой фракции входят разные глюкозиды, гемикетали и эфиры (ароматические компоненты лигнина). Водорастворимые вещества лигнинового комплекса коньячного спирта легко окисляются перманганатом при определении дубильных веществ.

Около 30 % лигнинового комплекса коньячного спирта представлено веществами, растворимыми в эфире. В состав этих веществ входит ряд ароматических альдегидов (ванилин, сиреневый альдегид, оксибензальдегид, конифриловый альдегид, синаповый альдегид) и ароматические кислоты (ванилиновая кислота, сиреневая кислота, оксибензойная кислота). Вкратце рассмотрим их характеристику.

Ванилин (С8Н8О3) имеет молекулярную массу 152, плотность ρ=1,056, температуру плавления 81,2 оС, плохо растворяется в воде, легко – в спирте, хлороформе, эфире, сероуглероде и растворах щелочи. Имеет темно-синюю флуоресценцию.

Сиреневый альдегид (С9Н10О4) имеет молекулярную массу 182, температуру плавления 113 оС, растворяется в эфире, этаноле, хлороформе, уксусной кислоте, горячем бензоле, тяжело – в воде и лигроине, не растворяется в петролейном эфире. Соли сиреневого альдегида, калия и натрия имеют желтый цвет, растворимы в воде и спирте.

Оксибензальдегид (С7Н6О2) имеет молекулярную массу 122, температуру плавления 116 оС, легко кристаллизуется из воды, растворяется в горячей воде, этаноле, эфире, в холодной воде не растворяется.

Конифриловый альдегид (С10Н10О3) имеет молекулярную массу 178, температуру плавления 82,5 оС, кристаллизуется из бензола, растворяется в метаноле, этаноле, эфире, хлороформе, растворяется в лигроине. Дает зеленую флуоресценцию.

Синаповый альдегид (С11Н12О4) имеет молекулярную массу 208, температуру плавления 108 оС, легко растворяется в спирте и уксусной кислоте, практически не растворяется в воде, бензоле и эфире. В минеральных концентрированных кислотах растворяется с образованием сине-красной окраски. Дает зеленую флуоресценцию.

В целом, ароматические альдегиды имеют решающее значение в образовании букета выдержанных коньяков. Они дают ряд характерных цветных реакций (наиболее известная реакция с флороглюцином в соляной кислоте).

Ароматические кислоты появляются в результате окисления ароматических альдегидов в коньячных спиртах. Это ванилиновая кислота с молекулярной массой 168 и температурой плавления 207...210 оС, хорошо растворимая в этаноле и эфире; сиреневая кислота с молекулярной массой 198 и температурой плавления 204,5 оС, легко растворимая в эфире, этаноле и хлороформе; оксибензойная кислота с молекулярной массой 138, плотностью ρ=1,443 кг/дм3, температурой плавления 215 оС.

Все ароматические кислоты дают сильную реакцию с реактивами Волин-Дениса. В трехлетнем коньячном спирте количество ванилиновой и сиреневой кислот составляет по 0,16 мг/дм3, в пятнадцатилетнем коньячном спирте – резко увеличивается и достигает 0,5 мг/дм³ каждый.

Дубильные вещества (таниди). Этих веществ в коньячном спирте даже при длительной выдержке в дубовых бочках сравнительно немного (до 0,25 г/дм3). Но в коньячных спиртах содержатся в большом количестве вещества, близкие по химическому составу к дубильным веществам. Все они объединены между собой наличием пирогалловых гидроксильных групп и имеют общее название: дубильные вещества коньячного спирта.

Скурихин И. М. в своих опытах доказал, что дубильные вещества в коньячных спиртах могут находиться не только в свободном положении, но и в связанном с лигнином, а таниды коньячных спиртов не представляют собой однородного комплекса.

В зависимости от способности адсорбироваться кожаным порошком и от растворимости в водных растворах, дубильные вещества разделяются на три фракции:

1. Водонерастворимые, легко выделяемые из раствора после отгонки спирта. Их количество составляет 20...36 % от суммы дубильных веществ, растворенных в коньячном спирте.

2. Водорастворимые, которые остаются в растворе после отгона спирта и адсорбируются кожаным порошком. Их количество составляет 36...60 % от общей суммы танидов коньячного спирта.

3. Водорастворимые, не сорбирующиеся кожаным порошком. Их количество составляет 20...30 % от суммы танидов.

В коньячных спиртах в результате гидролиза дубильных веществ в заметных количествах появляется элаговая и галловая кислоты. Свойства этих кислот характеризуются следующими данными:

Элаговая кислота (С14Н6О8) имеет молекулярную массу 302, температуру плавления 360 оС. Кислота тяжелорастворима в воде и спирте, нерастворима в эфире, с FeCl3 дает зеленую окраску. Кислота образуется при гидролизе дубильных веществ дуба.

Галловая кислота (С7Н6О5) имеет молекулярную массу 170, кристаллизуется из воды с одной молекулой воды, нерастворима в хлороформе, бензоле. Галловая кислота имеет антиоксидантное действие по отношению к терпенам и жирным маслам, является постоянным сопутствующим компонентом древесины дуба.

Углеводы и продукты их преобразований. Углеводы и продукты их преобразований в коньячных спиртах представлены простейшими моносахарами – фруктозой, глюкозой, ксилозой, арабинозой, рамнозой, маннозой и небольшим количеством декстринов. Кроме того, при купаже коньяка добавляют колер (продукт карамелизации сахарозы) и сахарозу.

Фруктоза (С6Н12О6) – кетоспирт, имеет молекулярную массу 180, температуру плавления 102...104 оС, плотность ρ=1,669 кг/дм3. Одна из форм фруктозы фруктопираноза может существовать в двух модификациях: α и β-формах. В кристаллах всегда находится β-D-фруктоза. В водных растворах D-фруктоза представлена в виде фруктопиранозы и фруктофуранозы.

Глюкоза (С6Н12О6) – имеет молекулярную массу 180, температуру плавления 146 оС, плотность ρ=1,544 кг/дм3. Это многоатомный альдегидоспирт.

Альдегидная форма глюкозы имеет четыре асимметрические атома углерода, а в циклической форме появляется пятый асимметрический атом. Поэтому D-глюкоза может существовать в двух модификациях: α и β-формах. α-D-глюкоза тяжело растворяется в воде, а β- D-глюкоза более растворима в воде.

Как и все другие моносахара, глюкоза является сильным восстановителем. Нагревание глюкозы в растворах минеральных кислот приводит к потере трех молекул воды и образованию оксиметилфурфурола – маслянистой жидкости с запахом переспевших яблок, имеющей сильные восстанавливая свойства. В дальнейшем это вещество распадается на левулиновую и муравьиную кислоты.

Ксилоза (С5Н10О5) – имеет молекулярную массу 150,13, температуру плавления 154 оС, плотность ρ=1,535 кг/дм3. Это кристаллическое вещество, в два раза менее сладкая, чем сахароза. Ксилоза восстанавливает Феллинговую жидкость в той же мере, как и глюкоза, а при кипячении с разбавленными минеральными кислотами дает фурфурол.

Арабиноза (С5Н10О5) характеризуется как восстановитель Феллинговой жидкости с образованием оксида меди. Молекулярная масса 150,13, температура плавления 160 оС, плотность ρ=1,585 кг/дм3. Арабиноза представляет собой кристаллическое вещество, менее сладкая на вкус, чем глюкоза. Под действием разбавленных минеральных кислот теряет три молекулы воды и образует фурфурол.

Рамноза (С6Н12О5) кристаллизуется из одной молекулой воды, имеет молекулярную массу 182,17; гидрат рамнозы плавится при температуре близкой 93…97 оС, а безводная рамноза – при 122…126оС. Рамноза плохо растворяется в эфире, хорошо – в воде и спирте. На воздухе безводная рамноза поглощает воду и переходит в моногидрат. Рамноза имеет сладкий вкус, но сахароза слаще ее втрое, а глюкоза – вдвое.

Сахароза (С12Н22О11) при купаже коньяков является их неотъемлемой частью. Молекулярная масса 342,3, температура плавления 184…185оС, плотность ρ=1,583 кг/дм3. Это дисахарид, расщепляющийся под действием разбавленных минеральных кислот или фермента инвертазы на смесь равных количеств D-глюкозы и D-фруктозы (инвертный сахар).

Сахароза представляет собой кристаллическое бесцветное вещество, сладкое на вкус. Расплавленная сахароза при охлаждении застывает в стекловидную массу. Сахароза распадается до вещества, которое не кристаллизуется (карамель) при температуре выше точки плавления.

В эфире и хлороформе сахароза нерастворима, но хорошо растворяется в воде, в абсолютном спирте малорастворима, в водно-спиртовых растворах – лучше.

Колер представляет собой продукт карамелизации сахарозы при температуре 180…200оС, т. е. выше температуры плавления сахарозы. При карамелизации происходит дегидратация сахарозы с образованием разных полимерных продуктов: карамелей, органических кислот и других соединений. Цвет колера зависит не от бесцветных ангидридов сахарозы, а от гуминовых кислот, которые при этом образуются. Колер содержит от 35 до 60 % сахара. Он хорошо растворяется в коньячном спирте и воде. При разведении 1 мл в 1 л воды его цвет должен отвечать цвету 10 мл 0,1н йода в 1 л воды. Плотность колера равна 1,3...1,4 кг/дм3.

Если в коньячных спиртах сахароза не находится, то в коньяках (в результате добавления сахарного сиропа) ее содержание – до 25 г/дм3. Колер в основном добавляют только к ординарным коньякам.

Альдегиды фуранового ряда . Из этих альдегидов в коньячных спиртах найдены фурфурол, метилфурфурол и оксиметилфурфурол.

Фурфурол (С5Н4О2) имеет молекулярную массу 96,08, плотность ρ=1,1598 кг/дм3, температуру плавления – 38,7 оС, температуру кипения – 161,7 оС. Это бесцветная жидкость с характерным запахом, хорошо растворяется в спирте и эфире. При хранении фурфурол медленно раскладывается с образованием муравьиной кислоты и гуминовых веществ коричневого цвета. Фурфурол в кислой среде дает характерный розовый цвет с анилином. Эта цветная реакция используется для количественного определения.

Метилфурфурол (С6Н6О2) имеет молекулярную массу 110,0, плотность ρ=1,1072 кг/дм3, температуру кипения – 187 оС. Легко растворяется в тридцати частях воды.

Оксиметилфурфурол (С6Н6О3) имеет молекулярную массу 126, температуру плавления – 35...35,5 оС, температуру кипения – 114...116 оС. Хорошо растворяется в этаноле, воде, уксусноэтиловом эфире. Образуется при гидратации глюкозы и фруктозы.

Минеральные и другие вещества. В среднем в коньячных спиртах содержание золы колеблется от 0,034 г/дм3 и выше, в молодых коньячных спиртах до 0,118 г/дм3, в старых (больше 20 лет выдержки) около 1 % от экстракта.

Состав зольных элементов коньячных спиртов и коньяков во многих случаях зависит от состава дерева дуба. Можно ожидать присутствие К, Са, Na, Mg, Cl, P, Si и др. При перегонке виноматериалов, вследствие контакта с медной и железной аппаратурой, в коньячный спирт переходит заметное количество железа и меди. Коньячные спирты, сохраняемые в алюминиевых цистернах без покрытия, могут содержать до 20 мг/дм3 алюминия, который негативно отражается на вкусе и аромате спиртов.

При выдержке коньячных спиртов происходит закономерное увеличение экстрактивных веществ и золы, зольность (% золы в экстракте) при этом снижается, что обусловлено выпадением в осадок ряда элементов, входящих в состав минеральных веществ. Заметно уменьшается при выдержке коньячных спиртов количество таких элементов как Cu, Fe, Mg, что объясняется их осаждением в виде труднорастворимых солей дубильных и органических кислот. Содержание К і Na увеличивается в результате экстракции из древесины дуба и концентрирования вследствие испарения спирта из бочек при выдержке.

Согласно действующим технологическим инструкциям, в коньячных спиртах и коньяках допускается следующее количество тяжелых металлов: свинец – не допускается, железо – не более 1 мг/дм3, олово – не более 5 мг/дм3 и медь – не более 8 мг/дм3.

В коньячных спиртах, кроме минеральных веществ, содержатся и азотистые вещества, количество которых составляет около 2 % от экстрактивных веществ спиртов. Так, в 24-летнем коньячном спирте содержание общего азота достигает 82 мг/дм3. Среди азотистых веществ в коньячных спиртах преобладают такие аминокислоты как гликокол, глютаминовая кислота, пролин и др.

АЦЕТАЛЬДЕГИД , уксусный альдегид , этаналь , СН 3 ·СНО, находится в винном спирте-сырце (образуется при окислении этилового алкоголя), а также в первых погонах, получающихся при ректификации древесного спирта. Прежде ацетальдегид получали окислением этилового спирта бихроматом, но теперь перешли к контактному способу: смесь паров этилового спирта и воздуха пропускается через нагретые металлы (катализаторы). Ацетальдегид, получающийся при разгонке древесного спирта, содержит около 4-5% различных примесей. Некоторое техническое значение имеет способ добывания ацетальдегида разложением молочной кислоты нагреванием ее. Все эти способы получения ацетальдегида постепенно теряют свое значение в связи с разработкой новых, каталитических методов получения ацетальдегида из ацетилена. В странах с развитой химической промышленностью (Германия) они получили преобладающее значение и дали возможность использования ацетальдегида в качестве исходного материала для получения других органических соединений: уксусной кислоты, альдоля и др. Основанием каталитического способа является реакция, открытая Кучеровым: ацетилен в присутствии солей окиси ртути присоединяет одну частицу воды и превращается в ацетальдегид - СН: СН + Н 2 О = СН 3 · СНО. Для получения ацетальдегида по немецкому патенту (химическая фабрика Грисгейм-Электрон в Франкфурте-на- Майне) в раствор окиси ртути в крепкой (45%) серной кислоте, нагретой не выше 50°, при сильном помешивании пропускается ацетилен; образующиеся при этом ацетальдегид и паральдегид периодически сливаются сифоном или отгоняются в вакууме. Наилучшим, однако, является способ, заявленный французским патентом 455370, по которому работает завод Консорциума электрической промышленности в Нюрнберге.

Там ацетилен пропускается в горячий слабый раствор (не выше 6%) серной кислоты, содержащий окись ртути; образующийся при этом ацетальдегид в течение хода процесса непрерывно перегоняется и сгущается в определенных приемниках. По способу Грисгейм-Электрон некоторая часть ртути, образующаяся в результате частичного восстановления окиси, теряется, т. к. находится в эмульгированном состоянии и не может быть регенерирована. Способ Консорциума в этом отношении представляет большое преимущество, т. к. здесь ртуть легко отделяется от раствора и затем электрохимическим путем превращается в окись. Выход почти количественный, и полученный ацетальдегид очень чист. Ацетальдегид - летучая, бесцветная жидкость, температура кипения 21°, удельный вес 0,7951. С водой смешивается в любом соотношении, из водных растворов выделяется после прибавления хлористого кальция. Из химических свойств ацетальдегида следующие имеют техническое значение:

1) Прибавление капли концентрированной серной кислоты вызывает полимеризацию с образованием паральдегида:

Реакция протекает с большим выделением тепла. Паральдегид - жидкость, кипящая при 124°, не обнаруживающая типичных альдегидных реакций. При нагревании с кислотами наступает деполимеризация, и получается обратно ацетальдегид. Кроме паральдегида, существует еще кристаллический полимер ацетальдегида - так называемый метальдегид, являющийся, вероятно, стереоизомером паральдегида.

2) В присутствии некоторых катализаторов (соляная кислота, хлористый цинк и особенно слабые щелочи) ацетальдегид превращается в альдоль . При действии крепких едких щелочей наступает образование альдегидной смолы.

3) При действии алкоголята алюминия ацетальдегид переходит в уксусноэтиловый эфир (реакция Тищенко): 2СН 3 ·СНО = СН 3 ·СОО·С 2 Н 5 . Этим процессом пользуются для получения этилацетата из ацетилена.

4) Особенно большое значение имеют реакции присоединения: а) ацетальдегид присоединяет атом кислорода, превращаясь при этом в уксусную кислоту: 2СН 3 ·СНО + О 2 = 2СН 3 ·СООН; окисление ускоряется, если к ацетальдегиду заранее прибавлено некоторое количество уксусной кислоты (Грисгейм-Электрон); наибольшее значение имеют каталитические способы окисления; катализаторами служат: окись-закись железа, пятиокись ванадия, окись урана и в особенности соединения марганца; б) присоединяя два атома водорода, ацетальдегид превращается в этиловый алкоголь: СН 3 ·СНО + Н 2 = СН 3 ·СН 2 ОН; реакция ведется в парообразном состоянии в присутствии катализатора (никель); в некоторых условиях синтетический этиловый спирт успешно конкурирует со спиртом, получаемым брожением; в) синильная кислота присоединяется к ацетальдегиду, образуя нитрил молочной кислоты: СН 3 ·СНО + HCN =СН 3 ·СН(ОН)CN, из которого омылением получается молочная кислота.

Эти многообразные превращения делают ацетальдегид одним из важных продуктов химической промышленности. Дешевое его получение из ацетилена в последнее время позволило осуществить целый ряд новых синтетических производств, из которых способ производства уксусной кислоты является сильным конкурентом старому способу ее добывания путем сухой перегонки дерева. Кроме того, ацетальдегид находит применение как восстановитель в производстве зеркал и идет для приготовления хинальдина - вещества, применяемого для получения красок: хинолиновой желтой и красной и др.; кроме того, он служит для приготовления паральдегида, применяющегося в медицине в качестве снотворного средства.


Publication in print media: Актуальные вопросы судебной медицины и права, Казань 2010 Вып. 1 ГКУЗ «Республиканское бюро судебно-медицинской экспертизы МЗ РТ»

Судебно-медицинская диагностика причины смерти в случаях алкогольной интоксикации нередко вызывает серьезные затруднения. Это, в первую очередь, относится к тем случаям, когда отсутствуют достаточно выраженные изменения внутренних органов, а концентрация этанола в крови либо незначительна, либо он вообще не обнаруживается. В подобных ситуациях объективным доказательством алкогольной интоксикации может служить обнаружение продуктов окисления этанола, в частности ацетальдегида, так как он служит одной из причин похмельного состояния, долго сохраняясь в организме .

Ацетальдегид (АЦ) – уксусный альдегид, органическое соединение, легко летучая бесцветная жидкость с удушающим запахом, смешивается во всех отношениях с водой, спиртом, эфиром. АЦ обладает всеми типичными свойствами альдегидов. В присутствии минеральных кислот он полимеризуется в жидкий тримерный паральдегид и тетрамерный метальдегид. Пары тяжелее воздуха, на воздухе окисляется с образованием перекисей. При разбавлении водой приобретает фруктовый запах. Применяют в огромных масштабах в производстве уксусной кислоты, уксусного ангидрида, различных фармацевтических препаратов и т.д. .

В организме человека постоянно присутствует эндогенный этанол, образующийся в биохимических процессах. Источник эндогенного этанола – эндогенный ацетальдегид, являющийся продуктом углеводного обмена, который образуется, главным образом, в результате декарбоксилирования пирувата при участии соответствующего фермента пируватдегидрогеназного комплекса. По литературным данным концентрация эндогенного этанола в крови здоровых людей в среднем составляет 0,0004 г/л; максимальные значения не превышают сотых долей г/л, концентрация эндогенного ацетальдегида в 100-1000 раз меньше. АЦ является основным промежуточным метаболитом этанола. Основной путь – с участием алкогольдегидрогеназы по схеме:

С 2 Н 5 ОН + NAD + ↔ СН 3 СНО + NADH + H + .

Образующийся АЦ окисляется альдегиддегидрогеназой (АДГ) до ацетата . В течение 1 часа в организме человека может быть метаболизировано 7- 10 г алкоголя, что соответствует снижению его концентрации в среднем на 0,1-0,16‰. Окислительные процессы могут активироваться и достигать 0,27‰/ч. Длительность токсикодинамики определяется, в первую очередь, количеством принятого алкоголя. При приеме больших количеств АЦ может сохраняться в организме 1 сутки и дольше. В течение 1-2 ч после взятия крови у живых лиц ферментативное окисление алкоголя прекращается, равно как и после наступления смерти в крови трупов . Основным местом образования АЦ из этанола и последующего его окисления является печень. Поэтому наибольшее количество ацетальдегида в опытах определяли в печени, затем в крови, наименьшее – в цереброспинальной жидкости.

Идентификацию АЦ в биологических объектах проводили на газовом хроматографе «Кристаллюкс-4000М», снабженном компьютерной программой «NetchromWin», пламенно-ионизационным детектором на капиллярных колонках. Использовались три капиллярные колонки:

  • колонка №1 30м/0,53 мм/1,0µ, ZB – WAX (Polyethylen Glycol);
  • колонка №2 30м/0,32 мм/0,5µ, ZB – 5 (5% Penyl methyl polysiloxane);
  • колонка №3 50 м/0,32 мм/0,5µ, HP – FFAP.

Температура колонок 50 °С, температура детектора 200 °С, температура испарителя 200 °С. Скорость потока газа-носителя (азота) 30 мл/мин, воздуха 500 мл/мин, водорода 60 мл/мин.

Отмечали хорошее разделение смеси (рис. 1): ацетальдегид+диэтиловый эфир+ацетон+этилацетат+этанол+ацетонитрил.

Рис. 1. Распределение веществ.

Обнаружению и определению ацетальдегида (табл. 1) не мешают ацетон, метанол, этанол и другие алифатические спирты, этилацетат, хлорорганические соединения, ароматические углеводороды, диэтиловый эфир.

Таблица 1. Сравнительные результаты идентификации ацетальдегид в смеси с другими веществами

Колонку №3 HP – FFAP не использовали для количественного анализа, так как такой анализ требует больших временных и экономических затрат.

Построение калибровочного графика ацетальдегида. Для построения ка-либровочного графика использовались водные растворы ацетальдегида (х.ч. для хроматографии) с концентрацией 1,5; 15; 30; 60; 150 мг/л. В качестве внутреннего стандарта – водный раствор ацетонитрила с концентрацией 78 мг/л.

Методика исследования: во флакон из стеклодрота, содержащий 0,5 мл 50% раствора фосфорно-вольфрамовой кислоты, помещали 0,5 мл внутреннего стандарта – раствор ацетонитрила с концентрацией 78 мг/л и 0,5 мл раствора ацетальдегида с известной концентрацией. Для уменьшения парциального давления паров воды к смеси добавляли 2 г безводного сульфата натрия. Флакон закрывали резиновой пробкой, фиксировали металлическим зажимом, нагревали в кипящей водяной бане в течение 5 минут и 0,5 мл тёплой парогазовой фазы вводили в испаритель хроматографа. Производили расчёт фактора чувствительности (табл. 2) для 2-х колонок:

Таблица 2. Расчёт фактора чувствительности

А ац, мг/л Колонка № 1 Колонка № 2
Sх, в мв/мин Sст, в мв/мин Sх, в мв/мин Sст, в мв/мин
150 69 10 15 2
60 39 11 4.5 1.7
30 24 14 3 2
15 10 12 1.2 1.5
1,5 1.2 15 0.18 2

Обозначения: А ац – концентрация ацетальдегида; Sх – площадь пика ацетальдегида; Sст – площадь пика ацетонитрила.


Рис. 2. График зависимости отношения площадей от концентраций ацетальдегида для 1-ой колонки.

По вышеописанной методике проводили исследования из биологических объектов (кровь, моча, вещество головного мозга, печень, почка и др.).

Исследовано 40 случаев при подозрении на отравление «суррогатами алкоголя». Результаты исследования этих случаев сведены в таблицу 3.

Таблица 3. Распределение этанола

Случай из практики: доставлен труп мужчины 40 лет из реанимационного отделения. В стационаре больной находился 4 часа, в анамнезе для лечения использован «Эспераль». В процессе судебно-химического исследования биологических объектов дисульфирам и другие лекарственные вещества не обнаружены. В крови этиловый алкоголь не обнаружен. Обнаружен АЦ с концентрацией: 0,5 мг/л в крови, 28 мг/л в желудке, 2 мг/л в печени, 1 мг/л в почке, 29 мг/л в кишечнике.

При одновременном употреблении этилового алкоголя и дисульфирама (тетурам) образуется АЦ. Механизм заключается в том, что дисульфирам ингибирует фермент алкогольдегидрогеназу, задерживая окисление этанола на уровне АЦ, что приводит к интоксикации организма человека. Некоторые лекарственные препараты могут оказывать тетурамоподобную активность, вызывая непереносимость к алкоголю. Это, прежде всего, хлорпропамид и другие противодиабетические сульфаниламидные препараты, метронидазол и т.п., производные нитро-5- имидозола, бутадион, антибиотики .

Выводы

  1. Использован современный высокочувствительный газовый хромато-граф «Кристаллюкс-4000М» с детектором ДИП и компьютерной программой «NetchromWin», который позволяет определять малые концентрации АЦ, близкие к эндогенным.
  2. Предложены новые селективные, высокочувствительные капиллярные колонки с фазами ZB-WAX, ZB-5, позволяющие обнаружить до 100 мкг (0,001%о) ацетальдегида в исследуемых пробах.
  3. Подобраны оптимальные условия, позволяющие проводить газо-хроматографический скрининг ацетальдегида и следующих органических растворителей: алифатических спиртов, хлорорганических растворителей, ароматических углеводородов, этилацетата, ацетона и диэтилового эфира в течение 15 минут.
  4. Рекомендовано проводить количественное определение как этанола, так и ацетальдегида при диагнозе «алкогольная интоксикация».

Список литературы

  1. Альберт А.// Избирательная токсичность. – М., 1989. – Т.1 – С. 213.
  2. Моррисон Р., Бойд Р.// Органическая химия, пер. с англ.-1974-78гг
  3. Савич В.И., Валладарес Х. АГусаков., Ю.А., Скачков З.М. // Суд.-мед. эксперт. – 1990. – № 4. – С. 24-27.
  4. Успенский А.Е., Листвина В.П.// Фармакол. и токсикол. – 1984. – №1. – С. 119-122.
  5. Шитов Л.Н.Методы исследования и токсикология этилового алкоголя (химико-токсикологическая лаборатория ЯОКНБ). – 2007.

УДК 577.1:616.89

ЭНДОГЕННЫЙ ЭТАНОЛ И АЦЕТАЛЬДЕГИД,

ИХ БИОМЕДИЦИНСКОЕ ЗНАЧЕНИЕ (Обзор литературы)

Ю. А. Тарасов, к. б. н., с.н.с.; В. В. Лелевич, д. м. н., профессор

УО «Гродненский государственный медицинский университет»

В обзоре представлены литературные данные о метаболизме эндогенного этанола и ацетальдегида в организме, а также их биологическом значении.

Ключевые слова: эндогенный этанол, ацетальдегид, алкогольдегидрогеназа, альдегиддегидрогеназа, пиру-ватдегидрогеназа.

The review presents the literature data on the metabolism of endogenous ethanol and acetaldehyde in the organism, as well as their biological value.

Key words: endogenous ethanol, acetaldehyde, alcohol dehydrogenase, acetaldehyde dehydrogenase, pyruvate dehydrogenase.

Характеризуя биологическую активность этанола и его метаболита - ацетальдегида, следует подчеркнуть два аспекта проблемы. Во-первых, когда речь идет об этих соединениях, как естественных метаболитах, постоянно (эндогенно) присутствующих в организме в физиологических концентрациях . Во-вторых, когда возникает ситуация с экзогенным поступлением алкоголя в организм, то есть, формирование состояний острой или хронической алкогольной интоксикации .

Этанол и его метаболиты - естественные компоненты обмена веществ, являются незаменимыми участниками гомеостатических механизмов . Для оценки метаболической значимости эндогенного этанола, следует сопоставить его уровень в крови и тканях с содержанием известных субстратов - участников обмена веществ в организме человека и животных (см. таблицу). Это дает возможность убедиться, что с учетом относительно малой молекулярной массы этанола, он легко помещается в один ряд с промежуточными продуктами углеводного и белкового обмена. Из представленных в таблице данных следует, что на несколько порядков ниже, чем эндогенный этанол, в этом ряду находится концентрация нейромедиатора. Но с ней вполне сопоставимо содержание ацетальдегида, постоянно присутствующего в организме в равновесных (1:100) с этанолом соотношениях. Это позволяет полагать, что роль пары этанол/ ацетальдегид в поддержании гомеостатических функций обмена веществ подобна той, которую выполняют в орга -низме отношения глюкоза/глюкозо-6-фосфат и лактат/ пируват в контроле реакций гликолиза и стабилизации уровней интермедиатов гликолиза .

Количество пирувата в тканях на 2-3 порядка ниже, чем лактата, но сам пируват, как и ацетальдегид, высоко реакционноспособен. При меняющихся метаболических ситуациях уровень пирувата смещается в значительно

Соединение Кровь (моль/л) Печень (моль/кг)

Глюкоза 5 - 10- 3

Глюкозо-6-фосфат 2 ■ 10- 4

Фруктозо-6-фосфат 2■10-4

Фосфодиоксиацетон 10- 5 - 10- 4 10-4

Аминокислоты 10-4 - 10-3

Этанол 10- 4 10- 4

Адреналин 10- 9

меньшей степени, чем уровень лактата, что, несомненно, отражает большую значимость в обмене веществ первого, а не второго соединения. Поэтому лактат расценивается как буферный метаболический тупик, нивелирующий колебания пирувата. С таких же позиций система этанол/ацетальдегид - аналогичный контрольный пункт для двууглеродных соединений и самого ацеталь-дегида. Такая оценка взаимоотношений этанол/ацеталь-дегид вполне удовлетворительно объясняет лабильность уровня эндогенного этанола при самых различных воздействиях. Таким образом, эндогенный этанол выполняет роль буфера, находящегося в равновесных динамических отношениях со своим весьма активным предшественником - ацетальдегидом. Рассматриваемая пара -этанол/ацетальдегид (см. рисунок) выполняет сходные функции буферного пула в отношении очень активного, особенно в отношении нейрогормонов, метаболита -ацетальдегида. Этанол работает в этой системе как буферный резерв для ацетальдегида, нивелируя колебания, которые неизбежно возникают в связи с синусоидальным характером течения многозвеньевых цепных реакций в обмене веществ .

Углеводы, липиды, аминокислоты

Лактат □ пируват □ ацетил-КоА

Этанол □ ацетальдегид □ ацетат

Другие источники

Рисунок - Лактат и этанол как метаболические «тупики» в обмене пирувата и ацетальдегида

Неоднотипность функций эндогенного этанола, которые могут быть самыми разными - источник энергии, предшественник ацетальдегида, участвующего в синтезе эндогенных морфиноподобных соединений , и являющегося сильнейшим модификатором аминных и суль-фгидрильных групп в белках . Ацетальдегид как мощнейший модификатор белков, изменяет не только их реактивность, но и пространственные характеристики, т. е. параметры, наиболее важные для эффективного связывания нейромедиаторов рецепторными белками. Ди-фильная природа этанола и ацетальдегида играет значимую роль в поддержании определенной гидрофобности белков и нужной функциональной текучести последних .

Оба соединения рассматриваются как двууглеродные радикалы, способные конкурентно взаимодействовать с множеством других двууглеродных молекул на уровне активных центров ферментов, транспортных белков и специфических рецепторов . Мембранотропность этанола функционально важна в патогенезе проявлений алкогольной болезни, поскольку различные диолы, причем, не образующие ацетальдегид, способны снять проявления синдрома отмены этанола . Особое значение пара этанол/ацетальдегид может иметь во взаимоотношениях с содержащими гидроксильную или карбонильную группировки нейромедиаторами, гормонами, их предшественниками и метаболитами, поскольку концентрация этих биорегуляторов значительно ниже концентрации эндогенного этанола и ацетальдегида.

Количество эндогенно образующегося и метаболи-зируемого ацетальдегида и этанола, таким образом, следует рассматривать как фактор, контролирующий значительную часть гомеостатических механизмов, формирующих в конечном итоге состояние, к которому любой организм стремится всегда - к «метаболическому комфорту» .

Многократно повторенные в разные сезонные периоды года, отборы животных по их отношению к потреблению растворов этанола , всегда давали возможность выделения из общей популяции крыс, предпочитающих воду (ПВ) или этанол (ПЭ). ПЭ составляли примерно по 5-10% от всехживотных, проходивших тестирование. Отличительной особенностью ПЭ особей являлось то, что содержание эндогенного этанола в крови, а, особенно, в печени, у них всегда было в 2-3 раза ниже, чем у ПВ. В свою очередь, обнаруженные обратные корреляционные взаимоотношения между уровнем эндогенного этанола и добровольным потреблением алкоголя, по существу, повторяют патогенетическую ситуацию: значение эндогенного этанола и ацетальдегида является таковым, что при их дефиците в организме простейшим способом самокоррекции становится дополнительный прием алкоголя. В свою очередь, экстраполяция данных взаимоотношений на механизмы патогенеза алкоголизма дает возможность полагать, что длительное избыточное потребление алкоголя, принудительное в эксперименте на животных и добровольное или социально-мотивированное у людей, замещая в итоге наработку эндогенного этанола и ацетальдегида, приводит вначале к торможению, а затем и к деградации систем эндогенного синтеза этих соединений. Т. е. к ситуации, когда внешнее поступление алкоголя в организм становится уже необходимым. В значительной мере, естественно, упрощенно, без учета наркоманического фактора в патогенезе, такими взаимоотношениями могут быть объяснены феномен физической зависимости, а также понимание того, почему при делириозных состояниях самым лучшим и простым средством для их купирования является введение больному самого алкоголя .

Связь алкогольной мотивации с уровнем эндогенного этанола прослеживается и в других экспериментальных ситуациях. Так, различные факторы, влияющие на потребление алкоголя животными или лекарственные средства, используемые для лечения, по влиянию на уровень эндогенного этанола в крови и печени разделились на две диаметрально противоположные группы. Все воздействия, усиливающие алкогольную мотивацию, такие как: стресс, голодание, окситиамин, ипрониазид, тетра-гидроизохинолины - снижают, а ослабляющие алкогольную мотивацию (тиамин, тиаминдифосфат, рибофлавин, диэтилдитиокарбамат, глутамин, хлористый литий) - по-

вышают уровень эндогенного этанола . Эти данные дополняются исследованиями других авторов в отношении транквилизаторов , кастрации и опытами, в которых крысы, разночувствительные к наркотическому действию этанола, отличались также и по уровню эндогенного этанола . Определение уровня эндогенного этанола используется в наркологических клиниках Польши для динамического контроля применяемого терапевтического лечения больных алкогольной болезнью . В клинике терапии алкогольной зависимости Петербургского психоневрологического института им. В. М. Бехтерева успешно используется метод лечения алкоголизма, базирующийся на восстановлении гомеостаза эндогенного этанола в организме пациентов .

Следует отметить, что перечисленные варианты проявления активности этанола и ацетальдегида имеют значение не только при острой и хронической алкогольной интоксикации, но, что является первостепенным, в естественных условиях, при эндогеннофоновом функционировании соединений. При этом в оценке биологической активности этанола различают два варианта: метаболический и токсикологический. В первом случае во главе стоит эндогенный этанол - как естественный метаболит обмена веществ. Во втором - избыточно поступающий в организм этанол выступает уже как мощный токсикологический агент и фактор метаболической дезинтеграции обмена веществ. Как в одном, так и в другом случае работают практически одни и те же системы, метаболи-зирующие алкоголь и альдегид, а в процессы метаболизма этих соединений включены все основные системы организма . Алкоголь, поступающий в организм, на 75-95% окисляется в печени. Другие органы обладают значительно меньшей способностью метаболизировать этанол. Кроме этого, небольшие его количества выделяются из организма с мочой и выдыхаемым воздухом .

Основные алкогольметаболизирующие системы:

Алкогольдегидрогеназа (АДГ, К.Ф.1.1.1.1) - фермент, широко распространенный в животных тканях и растениях. АДГ катализирует обратимое превращение алкоголей в соответствующие альдегиды и кетоны с НАД как кофактором:

Алкоголь + НАД □ альдегид + НАДН + Н+

Следует подчеркнуть, что при физиологических рН восстановление альдегидов или кетонов протекает в десятки раз быстрее, чем окисление алкоголей. Только при многократном (в 100-1000 раз) увеличении концентрации этанола, как это происходит при нагрузках организма алкоголем, фермент функционирует в обратном направлении . Субстратами для АДГ служат первичные и вторичные алифатические спирты и альдегиды, ретинол, другие полиеновые алкоголи, диолы, пантоте-ниловый алкоголь, стероиды, □-оксижирные кислоты, 5-оксиэтилтиазол и другие. Причем, следует отметить, что этанол и ацетальдегид - это не лучшие субстраты для АДГ. Изучение внутриклеточного распределения АДГ в печени показало, что фермент локализован в цитозоле гепатоцитов, но не в купферовских клетках. Большое функциональное значение АДГ подтверждают изменения активности фермента в органах и тканях при различных патологических состояниях. Естественной функцией АДГ, в огромных количествах присутствующей в печени человека и животных, является то, что фермент образует, а не потребляет эндогенный этанол и, таким образом, активно регулирует его уровень и обеспечивает гомеостаз эндогенного ацетальдегида .

Микросомальная этанолокисляющая система (МЭОС). Окисление этанола микросомами протекает согласно следующему уравнению:

С2Н5ОН + НАФН + Н+ + О 2 □ СН 3СНО + НАДФ+ + 2Н О Оптимум рН этой реакции лежит в физиологической области, Км для этанола составляет 7-10 Мм, что намного выше, чем для АДГ. МЭОС отличается от АДГ и ката-лазы по чувствительности к ингибиторам, а также по ряду других свойств. Она нечувствительна к действию пиразола и азида натрия. Активируют МЭОС пропилтиоура-цил и тиреоидные гормоны. Считается, что МЭОС идентична с неспецифическими оксидазами, осуществляющими детоксикацию лекарств в печени, и что именно через МЭОС проходит АДГ-независимый путь окисления этанола в организме млекопитающих. МЭОС, со всей очевидностью, функционирует независимо от АДГ и ка-талазы, причем её вклад в окисление этанола в норме составляет около 10%, но значительно возрастает при алкогольной интоксикации.

Каталаза (К.Ф.1.11.1.6) в присутствии перекиси водорода способна окислять этанол в ацетальдегид согласно уравнению:

С Ц ОН + Ц О2 □ СНзСНО + 2Н2О Фермент функционирует в широком спектре животных тканей, причем имеет как видовые, так и индивидуальные колебания своей активности. Источниками перекиси водорода являются реакции, катализируемые глю-козооксидазой, ксантиноксидазой, НАДФН-оксидазой. Максимальная активность каталазы проявляется при физиологических рН. Скорость каталазной реакции зависит от концентрации этанола и скорости образования перекиси водорода. В организме имеется значительное количество систем, генерирующих перекись водорода и локализованных в пероксисомах, эндоплазматическом ретикулуме, митохондриях, цитозоле и создающих концентрацию перекиси водорода в пределах 10-8 - 10-6М. Как и МЭОС, каталазный путь окисления этанола относят к минорным, приобретающим определенное значение только при высоких концентрациях этанола в организме или в условиях ингибирования АДГ.

Показана возможность окисления этанола путем перевода его молекулы в □-гидроксиэтильный радикал, что может происходить при передаче электронов синтазой окиси азота, которая способна к образованию суперок-сидного радикала, а также перекиси водорода. Исследователи выражают мнение, что синтаза окиси азота по уровню окисления этанола является не менее существенной, чем цитохром Р-450 при условии наличия Ь-аргини-на в качестве основного субстрата .

Одним из источников эндогенного этанола в животном организме является микрофлора кишечника. В опытах на ангиостомированных животных, путем одновременного забора крови из воротной вены и периферического венозного русла, показано, что оттекающая от кишечника кровь содержит больше этанола, чем оттекающая от печени .

При оценке балансовых отношений в обмене этанола, таким образом, следует считаться с двумя его источниками и главной, решающей ролью печеночной алко-гольдегидрогеназы в регуляции уровня алкогольемии .

Окисление альдегидов в организме млекопитающих происходит преимущественно неспецифической альде-гиддегидрогеназой (АльДГ, К.Ф.1.2.1.3). Реакция, катализируемая ферментом, необратима:

СН3СНО + НАД+ + Н2О □ СН 3СООН + НАДН + 2Н+

Альдегиддегидрогеназы печени представлены двумя ферментами: с низким (высокой Км) и высоким (низкой Км) сродством к ацетальдегиду, предпочтительно использующих алифатические субстраты и НАД как кофермент или ароматические альдегиды и НАДФ в качестве кофер-мента. АльДГ существует во множественных молекулярных формах, различающихся по структуре, каталитическим характеристикам и субклеточной локализации. У млекопитающих изоферменты АльДГ классифицируются в пять разных классов. Каждый класс имеет специфическую клеточную локализацию, которая преобладает у различных видов, что предполагает очень раннюю дивергенцию в эволюции АльДГ. Кроме дегидрогеназной, АльДГ печени обладает эстеразной активностью. Активность АльДГ обнаружена в митохондриях, микросомах и цитозоле .

Известны, но менее изучены, и другие ферменты, принимающие участие в превращениях ацетальдегида, такие как: альдегидредуктаза, альдегидоксидаза и ксанти-ноксидаза. Но, как уже отмечалось выше, восстановление ацетальдегида в организме осуществляется главным образом АльДГ и до настоящего времени единственным известным предшественником эндогенного этанола считается ацетальдегид.

Для животных тканей известны следующие ферменты, принимающие участие в наработке ацетальдегида:

Пируватдегидрогеназа (К.Ф.1.2.4.1), обычно катализирует окислительное декарбоксилирование пирува-та до ацетил-КоА. При этом декарбоксилирующий компонент этого полиферментного комплекса способен освобождать в ходе реакции и свободный ацетальдегид. Последний или окисляется АльДГ в митохондриях до ацетата, или в цитоплазме восстанавливается АДГ до этанола.

О-фосфорилэтаноламинфосфолиаза (К.Ф.4.2.99.7)

Фермент, расщепляющий фосфоэтаноламин до аце-тальдегида, аммиака и неорганического фосфата.

Треонинальдолаза (К.Ф.4.1.2.5) - катализирует реакцию расщепления треонина до глицина и ацетальдеги-да.

Альдолаза (К.Ф.4.1.2.7) животных тканей обладает специфичностью только в связывании диоксиацетонфос-фата и использует в качестве второго субстрата любые альдегиды. В свою очередь, в обращенной реакции таким путем образуется ацетальдегид.

В последнее время показано, что уменьшению концентрации ацетальдегида в животных тканях, в условиях избирательного угнетения активности пируватдегидро-геназы, может противостоять инверсивный характер изменений активности фосфоэтаноламинлиазы и треони-нальдолазы .

Известно также, что при распаде □-аланина - продукта деградации пиримидиновых азотистых оснований, вначале образуется малоновый альдегид, а затем ацетальде-гид .

Заключая анализ литературных данных, следует отметить, что в организме человека и животных эндогенный этанол постоянно присутствует в концентрациях, сопоставимых с уровнями других естественных интерме-

диатов обмена веществ. Уровень эндогенного этанола в крови и тканях модулируется разнообразными соединениями (гормонами, витаминами, антиметаболитами, аминокислотами и их производными, солями лития, ди-сульфирамом, цианамидом) и изменяется при различных функциональных состояниях организма (стрессе, голодании, старении), механизм действия которых явно неоднотипен . Само равновесие в системе эндогенный этанол/ацетальдегид, обеспечиваемое АДГ и другими ферментами, нарабатывающими и потребляющими аце-тальдегид, со всей очевидностью, контролирует и обмен двууглеродных и синтез морфиноподобных соединений, регулирует активность некоторых нейротрансмиттеров, пептидов и белков. В свою очередь, изменения активности алкоголь- и альдегидметаболизирующих систем как при их физиологических, так и в измененных алкогольными нагрузками условиях, по сути своей, являются адаптивными, обеспечивающими соответствующий функциональный и метаболический гомеостаз .

Обзор посвящен светлой памяти Учителя, академика Юрия Михайловича Островского, внесшего значительный вклад в понимание механизмов регуляции метаболизма эндогенного этанола и ацетальдегида, их биомедицинского значения и биохимии развития алкогольной болезни.

Литература

1. Андрианова, Л.Е. Обезвреживание токсических веществ в орга низме / Л.Е. Андриа нова, С.Н. Си луянов а // Би охимия - 5 изд.; под ред. Е.С. Северина - М.: ГЭОТАР-Медиа, 2009. - С. 619-623.

2. Андронова, Л.И. Особенности самостимуляции и эндогенный этанол у крыс разного пола / Л.И. Андронова, Р.В Кудрявцев, М.А. Константинопольский, А.В. Станишевская // Бюлл. экспер. биол. и мед. - 1984. - Т. 97, № 6. - С. 688-690.

3. Буров, Ю.В. Н ейрохими я и фа рма колог ия алкоголи зма / Ю.В. Буров, Н.Н. Ведерникова - М.: Медицина, 1985. - 238с.

4. Заводник, И.Б. Изучение взаимодействия ацетальдегида с белками и биологически активными соединениями / И.Б. Заводник, Н.С. Семуха, И.И. Степуро, В.Ю. Островский // Биохимия алкоголизма; под ред. Ю.М. Островского. - Минск: Наука и техника, 1980.- С. 68.

5. Лакоза, Г.Н. Уров ен ь эн дог ен ного этан ола и н арушен ия те стостерон-зави сим ых систем при экспериментальном а лкого-лизме самцов белых крыс / ГН. Лакоза, Н.В. Тюрина, Р.В. Кудрявцев, Н.К. Барков // I Моск. научно-практ. конференция психиат-ров-на ркологов / Вопросы патог енеза, клини ки и лечения алкогольных заболеваний. - М., 1984.- С. 66-68.

6. Лакоза, Г.Н. О значении центральной регуляции полового поведения при экспериментальном алкоголизме самцов белых крыс

/ ГН. Лакоза, А.В. Котов, А.Ф. Мещеряков, Н.К. Барков // Фарма-кол. и токсикол. - 1985. - Т. 4, № 3. - С. 95-98.

7. Лелевич, В.В. Состояние пула свободных аминокислот крови и печени при хронической алкогольной интоксикации / В.В. Леле-в ич, О.В.Артемов а // Журн ал Грод н ен ского го суда рств ен ного медицинского университета. - 2010. - № 2. - С. 16-19.

8. Островский, Ю.М. Метаболическая концепция генеза алкоголизма / Ю.М. Островский // Этанол и обмен веществ; под ред. Ю.М. Островского - Минск: Наука и техника, 1982. - С. 6-41.

9. Островский, Ю.М. Уровень эндогенного этанола и его связь с добровольным потреблением алкоголя крысами / Ю.М. Островский, М.Н. Садовник, А.А. Баньковский, В.П. Обидин // Доклады АН БССР. - 1983. - Т. 27, № 3. - С. 272-275.

10. Островский, Ю.М. Пути метаболизма этанола и их роль в развитии алкоголизма / Ю.М. Островский, М.Н. Садовник // Итоги науки и техники. Токсикология. - М.: ВИНИТИ, 1984. - Вып. 13. - С. 93-150.

11. Островский, Ю.М. Биологический компонент в генезисе алкоголизма / Ю.М. Островский, М.Н. Садовник, В.И. Сатановс-кая; под ред. Ю.М. Островского - Минск: Наука и техника, 1986.

12 . О стровский, Ю.М. Метаболич еские предпосылки и п о-следствия потребления алкоголя / Ю.М. Островский, В.И. Сата-новская, С.Ю. Островский, М.И. Селевич, В.В. Лелевич; под ред. Ю.М. Островского - Минск: Наука и техника, 1988. - 263 с.

13. Пыжик, Т.Н. Пути синтеза ацетальдегида в условиях избирательного ингибирования пируватдегидрогеназы окитиамином

/ Т.Н. Пыжик // Журнал Гродненского государственного медицинского университета. - 2010. - № 3. - С. 87-88.

14. Солодунов, А.А. Исследование действия спиртов на связывание лигандов сывороточным альбумином / А.А. Солодунов, Т.П. Гайко, А.Н. Арцукеви ч // Биохи мия алкоголизма; под ред. Ю.М. Островского. - Минск: Наука и техника, 1980. - С. 132.

15. Blomstand, R. Observation on the formation of ethanol in the intestinal tract in man / R. Blomstand // Life Sci. - 1971. - Vol. 10. - P. 575-582.

16. Chin, J .H. Increased cholesterol content of erythrocyte and brain membranes in ethanol-tolerant mice / J.H. Chin, L.M. Parsons, D.B. Goldstein // Biochim. Biophys. Acta. - 1978. - Vol. 513. - P 358-363.

17. Collins, M.A. Tetraisoquinolines in vivo. Rat brain formation of salsolinol, a product of dopamine and acetaldehyde under certain comditions during ethanol intoxication / M.A. Collins, M.G. Bigdell /

/ Life Sci. - 1975. - Vol. 16. - P 585-602.

18. Higgins, J.J. Biochemistry and pharmacology of ethanol / J.J. Higgins // New Jork-London, 1979. - P 531-539.

1 9 . Kopczynsk a , T. T he influence of a lcohol dependence on oxida tive stress pa ra meters / T. Kopczynsk a , L. Torlinski, M. Ziolkowski // Postepy Hig. Med. Dosw. - 2001. - Vol. 55, № 1. - P 95-111.

2 0 . Lu k a szewicz, A. T he compa rison of concentration of endogenous ethanol blood serum in alcoholics and in non-alcoholics at different stages of abstinence / A. Lukaszewicz, T. Markowski, D. Pawlak // Psychiatr. Pol. - 1997. - Vol. 31, - P 183-187.

21. Nikolaenko, V.N. Maintenance of homeostasis of endogenous ethanol as a method for the therapy of alcoholism / V.N. Nikolaenko // Bull. Exp. Biol. Med. - 2001. - Vol. 131,

№ 3. - P. 231-233.

2 2 . O strovsk y, Yu .M. Endogenous etha nol - its metha bolic, behavioral and biomedical significance / Yu.M. Ostrovsky // Alcohol.

1986. - Vol. 3. - P. 239-247.

23. Porasuphatana, S. Inducible nitric oxide syntetase cata lyses ethanol oxida tion to alpha-hydroxyethyl ra dica l a nd a cetaldehyde /