Что из себя представляет Солнечный ветер? Солнечный ветер. Факты и теория В каком слое образуется солнечный ветер

Солнечный ветер

Такое признание дорогого стоит, ибо возрождает к жизни полузабытую солнечно-плазмоидную гипотезу возникновения и развития жизни на Земле, выдвинутую ульяновским ученым Б. А. Соломиным почти 30 лет назад.

Солнечно-плазмоидная гипотеза утверждает, что высокоорганизованные солнечные и земные плазмоиды сыграли и до сих пор играют ключевую роль в зарождении и развитии жизни и разума на Земле. Эта гипотеза настолько интересна, особенно в свете получения экспериментальных материалов новосибирскими учеными, что с ней стоит познакомиться подробнее.

Прежде всего что такое плазмоид? Плазмоид – это плазменная система, структурированная собственным магнитным полем. В свою очередь, плазма – это горячий ионизированный газ. Простейшим примером плазмы является огонь. Плазма обладает способностью динамически взаимодействовать с магнитным полем, удерживать поле в себе. А поле, в свою очередь, упорядочивает хаотическое движение заряженных частичек плазмы. При определенных условиях образуется устойчивая, но динамичная система, состоящая из плазмы и магнитного поля.

Источником плазмоидов в Солнечной системе является Солнце. Вокруг Солнца, как и вокруг Земли, существует своя атмосфера. Внешняя часть солнечной атмосферы, состоящая из горячей ионизированной водородной плазмы, называется солнечной короной. И если на поверхности Солнца температура составляет примерно 10 000 К, то за счет потока энергии, идущего из его недр, температура короны достигает уже 1,5–2 млн К. Поскольку плотность короны мала, такой нагрев не уравновешивается потерей энергии за счет излучения.

В 1957 году профессор Чикагского университета Е. Паркер опубликовал свое предположение о том, что солнечная корона не находится в гидростатическом равновесии, а непрерывно расширяется. В этом случае значительная часть излучения Солнца представляет собой более или менее непрерывное истечение плазмы, так называемый солнечный ветер , который и уносит избыточную энергию. То есть солнечный ветер является продолжением солнечной короны.

Понадобилось два года, чтобы это предсказание было подтверждено экспериментально при помощи приборов, установленных на советских космических аппаратах «Луна-2» и «Луна-3». Позднее выяснилось, что солнечный ветер уносит с поверхности нашего светила помимо энергии и информации еще примерно миллион тонн вещества в секунду. Оно содержит главным образом протоны, электроны, немного ядер гелия, ионов кислорода, кремния, серы, никеля, хрома и железа.

В 2001 году американцы вывели на орбиту космический аппарат «Джинизис», созданный для изучения солнечного ветра. Пролетев более полутора миллиона километров, аппарат приблизился к так называемой точке Лагранжа, где гравитационное воздействие Земли уравновешивается гравитационными силами Солнца, и развернул там свои ловушки частиц солнечного ветра. В 2004 году капсула с собранными частицами рухнула на землю вопреки запланированной мягкой посадке. Частицы удалось «отмыть» и сфотографировать.

К настоящему времени наблюдения, выполненные со спутников Земли и других космических аппаратов, показывают, что межпланетное пространство заполнено активной средой – потоком солнечного ветра, который зарождается в верхних слоях солнечной атмосферы.

Когда на Солнце происходят вспышки, от него через солнечные пятна (корональные дыры) – области в атмосфере Солнца с открытым в межпланетное пространство магнитным полем во все стороны разлетаются потоки плазмы и магнитно-плазменные образования – плазмоиды. Этот поток движется от Солнца со значительным ускорением, и если у основания короны радиальная скорость частиц составляет несколько сотен м/с, то вблизи Земли она достигает 400–500 км/с.

Достигая Земли, солнечный ветер вызывает изменения в ее ионосфере, магнитные бури, что существенным образом сказывается на биологических, геологических, психических и даже исторических процессах. Об этом еще в начале XX века писал великий русский ученый А. Л. Чижевский, который с 1918 года в Калуге в течение трех лет проводил эксперименты в области аэроионизации и пришел к выводу: отрицательно заряженные ионы плазмы благотворно влияют на живые организмы, а положительно заряженные действуют противоположно. В те далекие времена до открытия и начала изучения солнечного ветра и магнитосферы Земли оставалось 40 лет!

Плазмоиды присутствуют в биосфере Земли, в том числе и в плотных слоях атмосферы и вблизи ее поверхности. В своей книге «Биосфера» В. И. Вернадский впервые описал механизм поверхностной оболочки, тонко согласованный во всех своих проявлениях. Без биосферы не было бы земного шара, ибо, по мнению Вернадского, Земля «лепится» Космосом при помощи биосферы. «Лепится» благодаря использованию информации, энергии и вещества. «По существу, биосфера может быть рассматриваема как область земной коры, занятая трансформаторами (курсив наш. – Авт .), переводящими космические излучения в действенную земную энергию – электрическую, химическую, тепловую, механическую и т. д.» (9). Именно биосфера, или «геологообразующая сила планеты», как назвал ее Вернадский, начала изменять структуру круговорота вещества в природе и «создавать новые формы и организации косной и живой материи». Вполне вероятно, что, говоря о трансформаторах, Вернадский говорил о плазмоидах, о которых в то время вообще ничего не знали.

Солнечно-плазмоидная гипотеза позволяет объяснить роль плазмоидов в зарождении жизни и разума на Земле. На ранних этапах эволюции плазмоиды могли стать своего рода активными «центрами кристаллизации» для более плотных и холодных молекулярных структур ранней Земли. «Одеваясь» в относительно холодные и плотные молекулярные одежды, становясь своеобразными внутренними «энергетическими коконами» возникающих биохимических систем, они одновременно являлись управляющими центрами сложной системы, направляя эволюционные процессы в сторону образования живых организмов (10). К подобному выводу пришли также ученые МНИИКА, которые сумели в экспериментальных условиях добиться материализации неравномерных эфирных потоков.

Аура, которую чувствительные физические приборы фиксируют вокруг биологических объектов, представляет собой, по-видимому, внешнюю часть плазмоидного «энергетического кокона» живого существа. Можно предположить, что энергетические каналы и биологически активные точки восточной медицины – это внутренние структуры «энергетического кокона».

Источником плазмоидной жизни для Земли является Солнце, и потоки солнечного ветра несут нам это жизненное начало.

А что является источником плазмоидной жизни для Солнца? Чтобы ответить на этот вопрос, необходимо предположить, что жизнь на любом уровне не возникает «сама по себе», а привносится из более глобальной, высокоорганизованной, разреженной и энергетичной системы. Как для Земли Солнце является «материнской системой», так и для светила должна существовать подобная «материнская система» (11).

По мнению ульяновского ученого Б. А. Соломина, «материнской системой» для Солнца могли служить межзвездная плазма, горячие водородные облака, туманности, содержащие магнитные поля, а также релятивистские (то есть двигающиеся со скоростью, близкой к скорости света) электроны. Большое количество разреженной и очень горячей (миллионы градусов) плазмы и релятивистских электронов, структурированных магнитными полями, заполняют галактическую корону – сферу, в которую заключен плоский звездный диск нашей Галактики. Глобальные галактические плазмоидные и релятивистско-электронные облака, уровень организации которых несоизмерим с солнечным, порождают плазмоидную жизнь на Солнце и других звездах. Таким образом, носителем плазмоидной жизни для Солнца служит галактические ветер.

А что является «материнской системой» для галактик? В образовании глобальной структуры Вселенной большую роль ученые уделяют сверхлегким элементарным частицам – нейтрино, буквально пронизывающим пространство во всех направлениях со скоростями, близкими к скорости света. Именно нейтринные неоднородности, сгустки, облака могли послужить теми «каркасами», или «центрами кристаллизации», вокруг которых в ранней Вселенной образовались галактики и их скопления. Нейтринные облака – это еще более тонкий и энергетичный уровень материи, чем описанные выше звездные и галактические «материнские системы» космической жизни. Они вполне могли быть конструкторами эволюции для последних.

Поднимемся, наконец, на самый высокий уровень рассмотрения – на уровень нашей Вселенной в целом, возникшей около 20 миллиардов лет назад. Изучая ее глобальную структуру, ученые установили, что галактики и их скопления располагаются в пространстве не хаотично и не равномерно, а вполне определенным образом. Они концентрируются вдоль стенок огромных пространственных «сот», внутри которых содержатся, как считалось до недавнего прошлого, гигантские «пустоты» – войды. Однако сегодня уже известно, что «пустот» во Вселенной не существует. Можно предположить, что все заполняет «специальная субстанция», носителем которой являются первичные торсионные поля. Эта «специальная субстанция», представляющая основу всех жизненных функций, вполне может являться для нашей Вселенной тем Мировым Архитектором, Космическим сознанием, Высшим разумом, который придает смысл ее существованию и направление эволюции.

Если это так, то уже в момент своего рождения наша Вселенная была живой и разумной. Жизнь и разум не возникают самостоятельно в каких-либо холодных молекулярных океанах на планетах, они изначально присущи космосу. Космос насыщен различными формами жизни, порой разительно отличающимися от привычных нам белково-нуклеиновых систем и несопоставимыми с ними по своей сложности и степени разумности, пространственно-временным масштабам, по энергии и массе.

Именно разреженная и горячая материя направляет эволюцию материи более плотной и холодной. Таков, по-видимому, фундаментальный закон природы. Космическая жизнь иерархически нисходит от таинственной материи войдов к нейтринным облакам, межгалактической среде, а от них – к ядрам галактик и галактическим коронам в виде релятивистско-электронных и плазменно-магнитных структур, затем – в межзвездное пространство, к звездам и, наконец, к планетам. Космическая разумная жизнь творит по своему образу и подобию все локальные формы жизни и управляет их эволюцией (10).

Наряду с общеизвестными условиями (температура, давление, химический состав и др.) для возникновения жизни требуется наличие у планеты выраженного магнитного поля, не только защищающего живые молекулы от смертоносной радиации, но и создающего вокруг нее концентрацию солнечно-галактической плазмоидной жизни в виде радиационных поясов. Из всех планет Солнечной системы (кроме Земли) только у Юпитера имеются сильное магнитное поле и большие радиационные пояса. Поэтому есть некоторая определенность наличия на Юпитере молекулярной разумной жизни, хотя, возможно, и небелковой природы.

С высокой степенью вероятности можно предположить, что все процессы на молодой Земле протекали не хаотично и не самостоятельно, а направлялись высокоорганизованными плазмоидными конструкторами эволюции. В существующей сегодня гипотезе возникновения жизни на Земле также признается необходимость наличия неких плазменных факторов, а именно мощных грозовых разрядов в атмосфере ранней Земли.

Не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала в тесном взаимодействии с плазмоидной жизнью при направляющей роли последней. Взаимодействие это становилось с течением времени все более тонким, поднималось на уровень психики, души, а затем и духа усложняющихся живых организмов. Дух и душа живых и разумных существ – это очень тонкая плазменная материя солнечного и земного происхождения.

Установлено, что плазмоиды, обитающие в радиационных поясах Земли (преимущественно солнечного и галактического происхождения), могут спускаться вдоль линий земного магнитного поля в низшие слои атмосферы, особенно в тех точках, где эти линии наиболее интенсивно пересекают поверхность Земли, а именно в районах магнитных полюсов (северного и южного).

Вообще, плазмоиды чрезвычайно широко распространены на Земле. Они могут обладать высокой степенью организации, проявлять некоторые признаки жизни и разумности. Советские и американские экспедиции в район южного магнитного полюса в середине XX века сталкивались с необычными светящимися объектами, плавающими в воздухе и ведущими себя очень агрессивно по отношению к членам экспедиции. Они были названы плазмозаврами Антарктиды.

С начала 1990-х годов регистрация плазмоидов не только на Земле, но и в ближайшем космосе возросла в разы. Это шары, полосы, круги, цилиндры, мало оформившиеся светящиеся пятна, шаровые молнии и т. д. Ученые сумели разделить все объекты на две большие группы. Это прежде всего объекты, которые имеют отчетливые признаки известных физических процессов, но в них эти признаки представлены в совершенно необычном сочетании. Другая группа объектов, наоборот, не имеет аналогий с известными физическими явлениями, и поэтому их свойства вообще необъяснимы на основе существующей физики.

Стоит отметить существование плазмоидов земного происхождения, рождающихся в зонах разломов, где идут активные геологические процессы. Интересен в этом отношении Новосибирск, стоящий на активных разломах и имеющий в связи с эти особую электромагнитную структуру над городом. Все свечения и вспышки, регистрируемые над городом, тяготеют к этим разломам и объясняются вертикальным энергетическим неравновесием и активностью пространства.

Наибольшее количество светящихся объектов наблюдается в центральном районе города, расположенном на участке, где совпадают сгущения технических энергоисточников и разломов гранитного массива.

Например, в марте 1993 года у общежития Новосибирского государственного педагогического университета наблюдался дискообразный объект порядка 18 метров в диаметре и 4,5 метра толщиной. Гурьба школьников гонялась за этим объектом, медленно дрейфовавшим над землей на протяжении 2,5 километра. Школьники пытались кидать в него камни, но те отклонялись, не долетая до объекта. Тогда дети стали подбегать под объект и развлекаться тем, что с них сбрасывались шапки, поскольку волосы становились дыбом от электрического напряжения. Наконец этот объект вылетел на линию высоковольтной передачи, никуда не отклоняясь, пролетел вдоль нее, набрал скорость, светимость, превратился в яркий шар и ушел вверх (12).

Следует особо отметить появление светящихся объектов в экспериментах, проводимых новосибирскими учеными в зеркалах Козырева. Благодаря созданию лево-правовращающихся торсионных потоков за счет вращающихся световых течений в обмотках лазерной нити и конусах ученые сумели в зеркале Козырева смоделировать информационное пространство планеты с появившимися в нем плазмоидами. Удалось исследовать влияние появившихся светящихся объектов на клетки, а затем и на самого человека, в результате чего укрепилась уверенность в правоте солнечно-плазмоидной гипотезы. Появилось убеждение, что не только рождение, но и дальнейшая эволюция белково-нуклеиновых систем протекала и протекает в тесном взаимодействии с плазмоидной жизнью при направляющей роли высокоорганизованных плазмоидов.

Данный текст является ознакомительным фрагментом.

Можно использовать не только как движитель космических парусников, но и как источник энергии. Наиболее известное применение солнечного ветра в этом качестве было впервые предложено Фрименом Дайсоном (Freeman Dyson), предположившим, что высокоразвитой цивилизации по силам создание сферы вокруг звезды, которая бы собирала всю испускаемую ею энергию. Исходя из этого так же был предложен очередной метод поиска внеземных цивилизаций.

Между тем, коллективом исследователей Вашингтонского университета (Washington State University) под руководством Брукса Харропа (Brooks Harrop) была предложена более практичная концепция использования энергии солнечного ветра - спутники Дайсона-Харропа. Они представляют собой довольно простые электростанции, собирающие электроны из солнечного ветра. На длинный металлический стержень, направленный на Солнце, подается напряжение для генерации магнитного поля, которое будет притягивать электроны. На другом конце располагается приемник-ловушка электронов, состоящая из паруса и приемника.

По расчетам Харропа, спутник с 300-метровым стержнем, толщиной 1 см и 10-метровой ловушкой, на орбите Земли сможет «собирать» до 1,7 МВт. Этого достаточно для обеспечения энергией примерно 1000 частных домов. Тот же спутник, но уже с километровым стержнем и парусом в 8400 километров сможет «собирать» уже 1 миллиард миллиардов гигаватт энергии (10 27 Вт). Остается только передать эту энергию на Землю, чтобы отказаться от всех остальных ее видов.

Команда Харропа предлагает передавать энергию с помощью лазерного луча. Однако, если конструкция самого спутника довольно проста и вполне реализуема на современном уровне технологий, то создание лазерного «кабеля» пока технически невозможно. Дело в том, что для эффективного сбора солнечного ветра спутник Дайсона-Харропа должен лежать вне плоскости эклиптики, а значит находится в миллионах километров от Земли. На таком расстоянии луч лазера будет давать пятно, диаметром в тысячи километров. Адекватная же фокусирующая система потребует объектив от 10 до 100 метров в диаметре. Кроме этого, нельзя исключать многие опасности от возможных сбоев системы. С другой стороны, энергия требуется и в самом космосе, и небольшие спутники Дайсона-Харропа вполне могут стать ее основным источником, заменив солнечные батареи и ядерные реакторы.

В конце 40-х годов американский астроном С. Форбуш обнаружил непонятное явление. Измеряя интенсив­ность космических лучей, Форбуш заметил, что она значительно снижается при возрастании солнечной ак­тивности и совсем резко падает во время магнитных бурь.

Это представлялось довольно странным. Скорее, мож­но было ожидать обратного. Ведь Солнце само является поставщиком космических лучей. Поэтому, казалось бы, чем выше активность нашего дневного светила, тем больше частиц оно должно выбрасывать в окружающее пространство.

Оставалось предположить, что возрастание солнечной активности влияет на земное магнитное поле таким об­разом, что оно начинает отклонять частицы космических лучей - отбрасывать их. Путь к Земле как бы запи­рается.

Объяснение казалось логичным. Но, увы, как выяс­нилось вскоре, оно было явно недостаточным. Подсчеты, проделанные физиками, неопровержимо свидетельство­вали о том, что изменение физических условий только в непосредственной близости от Земли не может вызвать эффекта такого масштаба, какой наблюдается в дей­ствительности. Очевидно, должны существовать и какие-то другие силы, препятствующие проникновению космических лучей в солнечную систему, и притом такие, которые возрастают с увеличением солнечной активности.

Тогда-то и возникло предположение, что виновни­ками загадочного эффекта являются потоки заряженных частиц, вырывающиеся с поверхности Солнца и про­низывающие пространство солнечной системы. Этот свое­образный «солнечный ветер» и очищает межпланетную среду, «выметая» из нее частицы космических лучей.

В пользу подобной гипотезы говорили также явления, наблюдающиеся в кометах. Как известно, кометные хво­сты всегда направлены от Солнца. Вначале это обстоя­тельство связывали со световым давлением солнечных лучей. Однако в середине текущего столетия было уста­новлено, что лишь световое давление не может вызывать всех явлений, происходящих в кометах. Расчеты пока­зали, что для образования и наблюдаемого отклонения кометных хвостов необходимо воздействие не только фотонов, но и частиц вещества. Кстати, такие частицы могли бы возбуждать происходящее в кометных хвостах свечение ионов.

Собственно говоря, о том, что Солнце выбрасывает потоки заряженных частиц - корпускул, было известно и до этого. Однако предполагалось, что такие потоки носят эпизодический характер. Их возникновение астро­номы связывали с появлением вспышек и пятен. Но ко­метные хвосты направлены в противоположную от Солн­ца сторону всегда, а не только в периоды усиления сол­нечной активности. Значит, и корпускулярная радиация, заполняющая пространство солнечной системы, должна существовать постоянно. Она усиливается с возраста­нием солнечной активности, но существует всегда.

Таким образом, околосолнечное пространство непре­рывно обдувается солнечным ветром. Из чего же состоит этот ветер и при каких условиях он возникает?

Познакомимся с самым внешним слоем солнечной ат­мосферы - «короной». Эта часть атмосферы нашего дневного светила необычайно разрежена. Даже в непо­средственной близости от Солнца ее плотность состав­ляет всего около одной стомиллионной доли плотности земной атмосферы. Это значит, что в каждом куби­ческом сантиметре околосолнечного пространства содер­жится всего несколько сотен миллионов частиц короны. Но так называемая «кинетическая температура» короны, определяемая по скорости движения частиц, весьма вели­ка. Она достигает миллиона градусов. Поэтому корональный газ полностью ионизован и представляет собой смесь протонов, ионов различных элементов и свободных элект­ронов.

Недавно появилось сообщение о том, что в составе солнечного ветра обнаружено присутствие ионов гелия. Это обстоятельство проливает спет на тот механизм, с помощью которого происходит выброс заряженных

частиц с поверхности Солнца. Если бы солнечный ветер состоял только из электронов и протонов, то еще можно было бы предполагать, что он образуется за счет чисто тепловых процессов и представляет собой нечто вроде пара, образующегося над поверхностью кипящей воды. Однако ядра атомов гелия в четыре раза тяжелее про­тонов и поэтому маловероятно, чтобы они могли выбра­сываться вследствие испарения. Скорее всего образова­ние солнечного ветра связано с действием магнитных сил. Улетая от Солнца, облака плазмы как бы уносят с собой и магнитные поля. Именно эти поля и служат тем своеобразным «цементом», который «скрепляет» воедино частицы с различными массами и зарядами.

Наблюдения и вычисления, проведенные астронома­ми, показали, что по мере удаления от Солнца плотность короны постепенно уменьшается. Но, оказывается, в районе орбиты Земли она еще заметно отличается от нуля. В этой области солнечной системы на каждый ку­бический сантиметр пространства приходится от ста до тысячи корональных частиц. Другими словами, наша планета находится внутри солнечной атмосферы и, если хотите, мы вправе называть себя не только жителями Земли, но и жителями атмосферы Солнца.

Если вблизи Солнца корона более или менее ста­бильна, то по мере увеличения расстояния она стре­мится расшириться в пространство. И чем дальше от Солнца, тем выше скорость этого расширения. Согласно расчетам американского астронома Э. Паркера, уже па расстоянии 10 млн. км корональные частицы движутся со скоростями, превосходящими скорость звука. И но мере дальнейшего удаления от Солнца и ослабления силы солнечного притяжения эти скорости возрастают еще в несколько раз.

Таким образом, напрашивается вывод о том, что сол­нечная корона - это и есть солнечный ветер, обдуваю­щий пространство нашей планетной системы.

Эти теоретические выводы были полностью подтвер­ждены измерениями па космических ракетах и искус­ственных спутниках Земли. Оказалось, что солнечный ветер существует всегда и вблизи Земли «дует» со ско­ростью около 400 км\сек. С увеличением солнечной ак­тивности скорость эта возрастает.

Как далеко дует солнечный ветер? Вопрос этот пред­ставляет значительный интерес, однако для получения соответствующих экспериментальных данных необходимо осуществить зондирование космическими аппаратами внешней части солнечной системы. Пока же это не сде­лано, приходится довольствоваться теоретическими сооб­ражениями.

Однако однозначного ответа получить не удается. В зависимости от исходных предпосылок расчеты при­водят к различным результатам. В одном случае получается, что солнечный ветер затихает уже в районе ор­биты Сатурна, в другом, - что он существует еще на очень большом расстоянии за орбитой последней планеты Плутона. Но это лишь теоретически крайние пределы возможного распространения солнечного ветра. Указать точную границу могут лишь наблюдения.

Наиболее достоверными были бы, как мы уже отме­чали, данные космических зондов. Но в принципе воз­можны и некоторые косвенные наблюдения. В частности, было замечено, что после каждого очередного спада сол­нечной активности соответствующее возрастание интен­сивности космических лучей высоких энергий, т. е. лу­чей, приходящих в солнечную систему извне, происходит с запозданием примерно на шесть месяцев. Видимо, это и есть как раз тот срок, который необходим, чтобы оче­редное изменение мощности солнечного ветра дошло до границы его распространения. Так как средняя скорость распространения солнечного ветра составляет около 2,5 астрономической единицы (1 астрономическая еди­ница = 150 млн. км-среднему расстоянию Земли от Солн­ца) в сутки, то это дает расстояние около 40-45 астро­номических единиц. Другими словами, солнечный ветер иссякает где-то в районе орбиты Плутона.


Солнечный ветер

- непрерывный поток плазмы солнечного происхождения, распространяющийся приблизительно радиально от Солнца и заполняющий собой Солнечную систему до гелиоцентрич. расстояний ~100 а.е. С.в. образуется при газодинамич. расширении в межпланетное пространство. При высоких темп-рах, к-рые существуют в солнечной короне ( К), давление вышележащих слоев не может уравновесить газовое давление вещества короны, и корона расширяется.

Первые свидетельства существования постоянного потока плазмы от Солнца получены Л. Бирманом (ФРГ) в 1950-х гг. по анализу сил, действующих на плазменные хвосты комет. В 1957 г. Ю. Паркер (США), анализируя условия равновесия вещества короны, показал, что корона не может находится в условиях гидростатич. равновесия, как это раньше предполагалось, а должна расширятся, и это расширение при имеющихся граничных условиях должно приводить к разгону коронального вещества до сверхзвуковых скоростей.

Средние характеристики С.в. приведены в табл. 1. Впервые поток плазмы солнечного происхождения был зарегистрирован на второй советской космич. ракете "Луна-2" в 1959 г. Существование постоянного истечения плазмы из Солнца было доказано в реузльтате многомесячных измерений на амер. АМС "Маринер-2" в 1962 г.

Таблица 1. Средние характеристики солнечного ветра на орбите Земли

Скорость 400 км/с
Плотность протонов 6 см -3
Температура протонов К
Температура электронов К
Напряженность магнитного поля Э
Плотность потока протонов см -2 с -1
Плотность потока кинетической энергии 0,3 эргсм -2 с -1

Потоки С.в. можно разделить на два класса: медленные - со скоростью км/с и быстрые - со скоростью 600-700 км/с. Быстрые потоки исходят из тех областей короны, где магнитное поле близко к радиальному. Часть этих областей явл. . Медленные потоки С.в. связаны, по-видимому, с областями короны, где имеется значит. тангенсальный компонент магн. поля.

Помимо основных составляющих С.в. - протонов и электронов, в его составе также обнаружена -частицы, высокоионизованные ионы кислорода, кремния, серы, железа (рис. 1). При анализе газов, захваченных в экспонированных на Луне фольгах, найдены атомы Ne и Ar. Средний хим. состав С.в. приведен в табл. 2.

Таблица 2. Относительный химический состав солнечного ветра

Элемент Относительное
содержание
H 0,96
3 He
4 He 0,04
O
Ne
Si
Ar
Fe

Ионизац. состояние вещества С.в. соответствует тому уровню в короне, где время рекомбинации становится малым по сравнению со временем расширения, т.е. на расстоянии . Измерения ионизац. темп-ры ионов С.в. позволяют определять электронную темп-ру солнечной короны.

С.в. уносит с собой в межпланетную среду корональное магн. поле. Вмороженные в плазму силовые линии этого поля образуют межпланетное магн. поле (ММП). Хотя напряженность ММП невелика и плотность его энергии составляет ок. 1% от кинетич. энергии С.в., оно играет большую роль в термодинамике С.в. и в динамике взаимодействий С.в. с телами Солнечной системы и потоков С.в. между собой. Комбинация расширения С.в. с вращением Солнца приводит к тому, что магн. силовые лионии, вмороженные в С.в., имеют форму, близкую к спиралям Архимеда (рис. 2). Радиальный и азимутальный компонент магн. поля вблизи плоскости эклиптики изменяются с расстоянием:
,
где R - гелиоцентрич. расстояние, - угловая скорость вращения Солнца, u R - радиальный компонент скорости С.в., индекс "0" соответствует исходному уровню. На расстоянии орбиты Земли угол между направлениями магн. поля и направлением на Солнце , на больших гелиоцентрич. расстояниях ММП почти перпендикулярно направлению на Солнце.

С.в., возникающий над областями Солнца с различной ориентацией магн. поля, образует потоки в различно ориентированными ММП - т.н. межпланетного магнитного поля.

В С.в. наблюдаются различные типы волн: ленгмюровские, вистлеры, ионнозвуковые, магнитозвуковые, и др. (см. ). Часть волн генерируется на Солнце, часть возбуждается в межпланетной среде. Генерация волн сглаживает отклонения функции распределения частиц от максвелловской и приводит к тому, что С.в. ведет себя как сплошная среда. Волны альвеновского типа играют большую роль в ускорении малых составляющих С.в. и в формировании функции распределения протонов. В С.в. наблюдаются также контактные и вращательные разрывы, харатерные для замагниченной плазмы.

Поток С.в. явл. сверхзвуковым по отношению к скорости тех типов волн, к-рые обеспечивают эффективную передачу энергии в С.в. (альвеновские, звуковые и магнитозвуковые волны), альвеновские и звуковые числа Маха С.в. на орбите Земли . При обтрекании С.в. препятствий, способных эффективно отклонять С.в. (магн. поля Меркурия, Земли, Юпитера, Стаурна или проводящие ионосферы Венеры и, по-видимому, Марса), образуется головная отошедшая ударная волна. С.в. тормозится и разогревается на фронте ударной волны, что позволяет ему обтекать препятствие. При этом в С.в. формируется полость - магнитосфера (собственная или индуцированная), форма и размер к-рой определяется балансом давлентия магн. поля планеты и давления обтекающего потока плазмы (см. ). Слой разогретой плазмы между ударной волной и обтекаемым препятствием наз. переходной областью. Темп-ры ионов на фронте ударной волны могут увеличиваться в 10-20 раз, электронов - в 1,5-2 раза. Ударная волна явл. , термализация потока к-ой обеспечивается коллективными плазменными процессами. Толщина фронта ударной волны ~100 км и определяется скоростью нарастания (магнитозвуковой и/или нижнегибридной) при взаимодействии набегающего потока и части потока ионов, отраженного от фронта. В случае взаимодействия С.в. с непроводящим телом (Луна) ударная волна не возникает: поток плазмы поглощается поверхностью, а за телом образуется постепенно заполняемая плазмой С.в. полость.

На стационарный процесс истечения плазмы короны накладываются нестационарные процессы, связанные со . При сильных солнечных вспышках происходит выброс вещества из нижних областей короны в межпланетную среду. При этом также образуется ударная волна (рис. 3), к-рая постепенно замедляется при движении через плазму С.в. Приход ударной волны к Земле проводит к сжатию магнитосферы, после к-рого обычно начинается развитие магн. бури.

Ур-ние, описывающее расширение солнечной короны, можно получить из системы ур-ний сохранения массы и момента количества движения. Решения этого ур-ния, описывающие различный характер изменения скорости с расстоянием, показаны на рис. 4. Решения 1 и 2 соответствуют малым скоростям в основании короны. Выбор между этими двумя решениями определяется условиями на бесконечности. Решение 1 соответствует малым скоростям расширения короны ("солнечный бриз", по Дж. Чемберлену, США) и дает большие значения давления на бесконечности, т.е. встречается с теми же трудностями, что и модель статич. короны. Решение 2 соответствует переходу скорости расширения через значение скорости звука (v K ) на нек-ром критич. расстоянии R K и последующему расширению со сверхзвуковой скоростью. Это решение дает исчезающе малое значение давления на бесконечности, что позволяет согласовать его с малым давлением межзвездной среды. Течение этого типа Паркер назвал солнечным ветром. Критич. точка находится над поверхностью Солнца, если темп-ра короны меньше нек-рого критич. значения , где m - масса протона, - показатель адиабаты. На рис. 5 показано изменение скорости расширения с гелиоцентрич. расстоянием в зависимости от темп-ры изотермич. изотропной короны. Последующие модели С.в. учитывают вариации корональной темп-ры с расстоянием, двухжидкостный хапрактер среды (электронный и протонный газы), теплопроводность, вязкость, несферический характер расширения. Подход к веществу С.в. как к сплошной среде оправдывается наличием ММП и коллективным характером взаимодействия плазмы С.в., обусловленным различного типа неустойчивостями. С.в. обеспечивает осн. отток тепловой энергии короны, т.к. теплопередача в хромосферу, электромагнит. излучение сильно ионизованного вещества короны и электронная теплопроводность С.в. недостаточны для установления термич. баланса короны. Электронная теплопроводность обеспечивает медленное убывание темп-ры С.в. с расстоянием. С.в. не играет сколько-нибудь заметной роли в энергетике Солнца в целом, т.к. поток энергии, уносимый им составляет ~ 10 -8