Какие существуют состояния вещества. Что такое агрегатное состояние? Агрегатное состояние вещества. Твердые и жидкие тела

Агрегатным состоянием вещества принято называть его способность сохранять свою форму и объем. Дополнительный признак – способы перехода вещества их одного агрегатного состояния в другое. Исходя из этого, выделяют три агрегатных состояния: твердое тело, жидкость и газ. Видимые свойства их таковы:

Твердое тело – сохраняет и форму, и объем. Может переходить как в жидкость путем плавления, так и непосредственно в газ путем сублимации.
- Жидкость – сохраняет объем, но не форму, то есть обладает текучестью. Пролитая жидкость стремится неограниченно растечься по поверхности, на которую вылита. В твердое тело жидкость может перейти путем кристаллизации, а в газ – путем испарения.
- Газ – не сохраняет ни формы, ни объема. Газ вне какого-нибудь вместилища стремится неограниченно расшириться во все стороны. Помешать ему в этом может только сила тяжести, благодаря чему земная атмосфера не рассеивается в космос. В жидкость газ переходит путем конденсации, а непосредственно в твердое тело может перейти путем осаждения.

Фазовые переходы

Переход вещества из одного агрегатного состояния в другое называется фазовым переходом, так как научный агрегатного состояния – фаза вещества. Например, вода может существовать в твердой фазе (лед), жидкой (обычная вода) и газообразной (водяной пар).

На примере воды также хорошо демонстрируется . Вывешенное во дворе на просушку в морозный безветренный день тут же промерзает, но спустя некоторое время оказывается сухим: лед сублимирует, непосредственно переходя в водяной пар.

Как правило, фазовый переход из твердого тела в жидкость и газ требует нагрева, но температура среды при этом не повышается: тепловая энергия уходит на разрыв внутренних связей в веществе. Это так называемая скрытая теплота . При обратных фазовых переходах (конденсации, кристаллизации) эта теплота выделяется.

Именно поэтому так опасны ожоги паром. Попадая на кожу, он конденсируется. Скрытая теплота испарения/конденсации воды очень велика: вода в этом отношении – аномальное вещество; именно поэтому и возможна жизнь на Земле. При ожоге паром скрытая теплота конденсации воды «прошпаривает» обожженное место очень глубоко, и последствия парового ожога оказываются куда тяжелее, чем от пламени на такой же площади тела.

Псевдофазы

Текучесть жидкой фазы вещества определяется ее вязкостью, а вязкость – характером внутренних связей, которым посвящен следующий раздел. Вязкость жидкости может быть очень высокой, и такая жидкость может течь незаметно для глаза.

Классический пример – стекло. Оно не твердое тело, а очень вязкая жидкость. Обратите внимание, что листы стекла на складах никогда не хранят прислоненными наискось к стене. Уже через несколько дней они прогнутся под собственной тяжестью и окажутся непригодными к употреблению.

Другие примеры псевдотвердых тел – сапожный вар и строительный битум. Если забыть угловатый кусок битума на крыше, за лето он растечется в лепешку и прилипнет к основе. Псевдотвердые тела отличить от настоящих можно по характеру плавления: настоящие при нем либо сохраняют свою форму, пока враз не растекутся (припой при пайке), либо оплывают, пуская лужицы и ручейки (лед). А очень вязкие жидкости постепенно размягчаются, как тот же вар или битум.

Чрезвычайно вязкими жидкостями, текучесть которых не заметна на протяжении многих лет и десятилетий, являются пластики. Высокая их способность сохранять форму обеспечивается огромным молекулярным весом полимеров, во многие тысячи и миллионы атомов водорода.

Структура фаз вещества

В газовой фазе молекулы или атомы вещества отстоят друг от друга очень далеко, во много раз больше, чем расстояние между ними. Взаимодействуют они между собой изредка и нерегулярно, только при столкновениях. Само взаимодействие упругое: столкнулись, как твердые шарики, и тут же разлетелись.

В жидкости молекулы/атомы постоянно «чувствуют» друг друга за счет очень слабых связей химической природы. Эти связи все время рвутся и тут же опять восстанавливаются, молекулы жидкости непрерывно перемещаются относительно друг друга, поэтому жидкость и течет. Но чтобы превратить ее в газ, нужно разорвать все связи сразу, а на это нужно очень много энергии, потому жидкость и сохраняет объем.

Вода в этом отношении отличается от прочих веществ тем, что ее молекулы в жидкости связаны так называемыми водородными связями, довольно прочными. Поэтому вода и может быть жидкостью при нормальной для жизни температуре. Многие вещества с молекулярной массой в десятки и сотни раз больше, чем у воды, в нормальных условиях – газы, как хотя бы обычный бытовой газ.

В твердом теле все его молекулы прочно стоят на своих местах благодаря сильным химическим связям между ними, образуя кристаллическую решетку. Кристаллы правильной формы требуют для своего роста особых условий и потому в природе встречаются редко. Большинство твердых тел представляют собой прочно сцепленные силами механической и электрической природы конгломераты мелких и мельчайших кристалликов – кристаллитов.

Если читателю доводилось видеть, например, треснувшую полуось автомобиля или чугунный колосник, то зерна кристаллитов на сломе там видны простым глазом. А на осколках разбитой фарфоровой или фаянсовой посуды их можно наблюдать под лупой.

Плазма

Физики выделяют и четвертое агрегатное состояние вещества – плазму. В плазме электроны оторваны от атомных ядер, и она представляет собой смесь электрически заряженных частиц. Плазма может быть очень плотной. Например, один кубический сантиметр плазмы из недр звезд – белых карликов, весит десятки и сотни тонн.

Плазму выделяют в отдельное агрегатное состояние потому, что она активно взаимодействует с электромагнитными полями из-за того, что ее частицы заряжены. В свободном пространстве плазма стремится расшириться, остывая и переходя в газ. Но под воздействием электромагнитных полей она может вне сосуда сохранять форму и объем, как твердое тело. Это свойство плазмы используется в термоядерных энергетических реакторах – прообразах энергоустановок будущего.

Вещества могут находиться в различных агрегатных состояниях: твердом, жидком, газообразном. Молекулярные силы в разных агрегатных состояниях различны: в твердом состоянии они наибольшие, в газообразном - наименьшие. Различием молекулярных сил объясняются свойства, которые проявляются в разных агрегатных состояниях :

В твердых телах расстояние между молекулами маленькое и преобладают силы взаимодействия. Поэтому твердые тела обладают свойством сохранять форму и объем. Молекулы твердых тел находятся в постоянном движении, но каждая молекула движется около положения равновесия.

В жидкостях расстояние между молекулами побольше, значит, меньше и силы взаимодействия. Поэтому жидкость сохраняет объем, но легко меняет форму.

В газах силы взаимодействия совсем невелики, так как расстояние между молекулами газа в несколько десятков раз больше размеров молекул. Поэтому газ занимает весь предоставленный ему объем.

Переходы из одного агрегатного состояния вещества в другое

Определение

Плавление вещества $-$ переход вещества из твердого состояния в жидкое.

Этот фазовый переход всегда сопровождается поглощением энергии, т. е. к веществу необходимо подводить теплоту. При этом внутренняя энергия вещества увеличивается. Плавление происходит только при определенной температуре, называемой температурой плавления. Каждое вещество имеет свою температуру плавления. Например, у льда $t_{пл}=0^0\textrm{С}$.

Пока происходит плавление, температура вещества не изменяется.

Что надо сделать, что расплавить вещество массой $m$? Сначала нужно его нагреть до температуры плавления $t_{пл}$, сообщив количество теплоты $c{\cdot}m{\cdot}{\Delta}T$, где $c$ $-$ удельная теплоемкость вещества. Затем необходимо подвести количество теплоты ${\lambda}{\cdot}m$, где $\lambda$ $-$ удельная теплота плавления вещества. Само плавление будет происходить при постоянной температуре, равной температуре плавления.

Определение

Кристаллизация (затвердевание) вещества $-$ переход вещества из жидкого состояния в твердое.

Это процесс, обратный плавлению. Кристаллизация всегда сопровождается выделением энергии, т. е. от вещества необходимо отводить теплоту. При этом внутренняя энергия вещества уменьшается. Она происходит только при определенной температуре, совпадающей с температурой плавления.

Пока происходит кристаллизация, температура вещества не изменяется.

Что надо сделать, что вещество массой $m$ кристаллизовалось? Сначала нужно его охладить до температуры плавления $t_{пл}$, отведя количество теплоты $c{\cdot}m{\cdot}{\Delta}T$, где $c$ $-$ удельная теплоемкость вещества. Затем необходимо отвести количество теплоты ${\lambda}{\cdot}m$, где $\lambda$ $-$ удельная теплота плавления вещества. Кристаллизация будет происходить при постоянной температуре, равной температуре плавления.

Определение

Парообразование вещества $-$ переход вещества из жидкого состояния в газообразное.

Этот фазовый переход всегда сопровождается поглощением энергии, т. е. к веществу необходимо подводить теплоту. При этом внутренняя энергия вещества увеличивается.

Различают два вида парообразования: испарение и кипение.

Определение

Испарение $-$ парообразование с поверхности жидкости, происходящее при любой температуре.

Скорость испарения зависит от:

    температуры;

    площади поверхности;

    рода жидкости;

    ветра.

Определение

Кипение $-$ парообразование по всему объему жидкости, которое происходит только при определенной температуре, называемой температурой кипения.

Каждое вещество имеет свою температуру кипения. Например, у воды $t_{кип}=100^0\textrm{С}$. Пока происходит кипение, температура вещества не изменяется.

Что надо сделать, чтобы вещество массой $m$ выкипело? Сначала нужно его нагреть до температуры кипения $t_{кип}$, сообщив количество теплоты $c{\cdot}m{\cdot}{\Delta}T$, где $c$ $-$ удельная теплоемкость вещества. Затем необходимо подвести количество теплоты ${L}{\cdot}m$, где $L$ $-$ удельная теплота парообразования вещества. Само кипение будет происходить при постоянной температуре, равной температуре кипения.

Определение

Конденсация вещества $-$ переход вещества из газообразного состояния в жидкое.

Это процесс, обратный парообразованию. Конденсация всегда сопровождается выделением энергии, т. е. от вещества необходимо отводить теплоту. При этом внутренняя энергия вещества уменьшается. Она происходит только при определенной температуре, совпадающей с температурой кипения.

Пока происходит конденсация, температура вещества не изменяется.

Что надо сделать, чтобы вещество массой $m$ сконденсировалось? Сначала нужно его охладить до температуры кипения $t_{кип}$, отведя количество теплоты $c{\cdot}m{\cdot}{\Delta}T$, где $c$ $-$ удельная теплоемкость вещества. Затем необходимо отвести количество теплоты ${L}{\cdot}m$, где $L$ $-$ удельная теплота парообразования вещества. Конденсация будет происходить при постоянной температуре, равной температуре кипения.

Цели урока:

  • углубить и обобщить знания об агрегатных состояниях вещества, изучить в каких состояниях могут находиться вещества.

Задачи урока:

Обучающие – сформулировать представление о свойствах твёрдых тел, газов, жидкостей.

Развивающие – развитие учащихся навыков речи, анализа, выводы по пройденному и изученному материалу.

Воспитательные – привитие умственного труда, создание всех условий,для повышения интереса к изученному предмету.

Основные термины:

Агрегатное состояние - это состояние вещества, которое характеризуется определёнными качественными свойствами: - способность или неспособность сохранять форму и объём; - наличие или отсутствие ближнего и дальнего порядка; - другими.

Рис.6. Агрегатное состояние вещества при изменении температуры.

Когда вещество из твёрдого состояния переходит в жидкое, то это называется плавлением, обратный процесс – кристаллизацией. При переходе вещества из жидкости в газ, этот процесс называется парообразованием, в жидкость из газа – конденсацией. А переход сразу в газ из твёрдого тела, минуя жидкое – сублимацией, обратный процесс – десублимацией.

1.Кристаллизация; 2. Плавление; 3. Конденсация; 4. Парообразование;

5. Сублимация; 6. Десублимация.

Эти примеры переходов мы постоянно наблюдаем в повседневной жизни. Когда лед плавится, он превращается в воду, а вода в свою очередь испаряется, и образовывается пара. Если рассматривать в обратную сторону то, пар, конденсируясь, начинает переходить снова в воду, а вода в свою очередь, замерзая, становится льдом. Запах любого твёрдого тела – это сублимация. Часть молекул вырывается из тела, при этом образовывается газ, который и даёт запах. Пример обратного процесса – это в зимнее время узоры на стекле, когда пар в воздухе при замерзании оседает на стекле.

На видео показано изменение агрегатных состояний вещества.

Контролирующий блок.

1.После замерзания, вода превратилась в лёд. Изменились, ли при этом молекулы воды?

2.В помещении пользуются медицинским эфиром. И из-за этого обычно им сильно там пахнет. В каком состоянии находится эфир?

3.Что происходит с формой жидкости?

4.Лёд. Это какое состояние воды?

5.Что происходит когда замерзает вода?

Домашнее задание.

Ответить на вопросы:

1.Можно ли на половину объёма сосуда заполнить его газом? Почему?

2.Могут ли быть при комнатной температуре в жидком состоянии: азот и кислород?

3.Могут ли быть при комнатной температуре в газообразном состоянии: железо и ртуть?

4.В морозный зимний день над рекой образовался туман. Какое это состояние вещества?

Мы считаем, что у вещества существует три агрегатных состояния. На самом же деле их как минимум пятнадцать, при этом список этих состояний продолжает расти с каждым днём. Это: аморфное твёрдое, твёрдое, нейтрониум, кварк-глюонная плазма, сильно симметричное вещество, слабо симметричное вещество, фермионный конденсат, конденсат Бозе-Эйнштейна и странное вещество.

В этом разделе мы рассмотрим агрегатные состояния , в которых пребывает окружающая нас материя и силы взаимодействия между частицами вещества, свойственные каждому из агрегатных состояний.


1. Состояние твёрдого тела ,

2. Жидкое состояние и

3. Газообразное состояние .


Часто выделяют четвёртое агрегатное состояние – плазму .

Иногда, состояние плазмы считают одним из видов газообразного состояния.


Плазма - частично или полностью ионизированный газ , чаще всего существующий при высоких температурах.


Плазма является самым распространённым состоянием вещества во вселенной, поскоьку материя звёд пребывает именно в этом состоянии.


Для каждого агрегатного состояния характерны особенности в характере взаимодействия между частицами вещества, что влияет на его физические и химические свойства.


Каждое вещество может пребывать в разных агрегатных состояниях. При достаточно низких температурах все вещества находятся в твёрдом состоянии . Но по мере нагрева они становятся жидкостями , затем газами . При дальнейшем нагревании они ионизируются (атомы теряют часть своих электронов) и переходят в состояние плазмы .

Газ

Газообразное состояние (от нидерл. gas, восходит к др.-греч. Χάος ) характеризующееся очень слабыми связями между составляющими его частицами.


Образующие газ молекулы или атомы хаотически движутся и при этом преобладающую часть времени находятся на больших (в сравнении с их размерами) растояниях друг от друга. Вследствие этого силы взаимодействия между частицами газа пренебрежимо малы .

Основной особенностью газа является то, что он заполняет все доступное пространство, не образуя поверхности. Газы всегда смешиваются. Газ - изотропное вещество , то есть его свойства не зависят от направления.


При отсутствии сил тяготения давление во всех точках газа одинаково. В поле сил тяготения плотность и давление не одинаковы в каждой точке, уменьшаясь с высотой. Соответственно, в поле сил тяжести смесь газов становится неоднородной. Тяжелые газы имеют тенденцию оседать ниже, а более легкие - подниматься вверх.


Газ имеет высокую сжимаемость - при увеличении давления возрастает его плотность. При повышении температуры расширяются.


При сжатии газ может перейти в жидкость , но конденсация происходит не при любой температуре, а при температуре, ниже критической температуры. Критическая температура является характеристикой конкретного газа и зависит от сил взаимодействия между его молекулами. Так, например, газ гелий можно ожижить только при температуре, ниже от 4,2 К .


Существуют газы, которые при охлаждении переходят в твердое тело, минуя жидкую фазу. Превращения жидкости в газ называется испарением, а непосредственное превращение твердого тела в газ - сублимацией .

Твёрдое тело

Состояние твёрдого тела в сравнении с другими агрегатными состояниями характеризуется стабильностью формы .


Различают кристаллические и аморфные твёрдые тела .

Кристаллическое состояние вещества

Стабильность формы твёрдых тел связана с тем, что большинство, находящихся в твёрдом состоянии имеет кристалическое строение .


В этом случае расстояния между частицами вещества малы, а силы взаимодействия между ними велики, что и определяет стабильность формы .


В кристаллическом строении многих твёрдых тел легко убедиться, расколов кусок вещества и рассмотрев полученный излом. Обычно на изломе (например, у сахара, серы, металлов и пр.) хорошо заметны расположенные под разными углами мелкие грани кристаллов, поблескивающие вследствии различного отражения ими света.


В тех случаях, когда кристаллы очень малы, кристаллическое строение вещества можно установить при помощи микроскопа.


Формы кристаллов


Каждое вещество образует кристаллы совершенно определённой формы.


Разнообразие кристаллических форм может быть сведено к семи группам:


1. Триклинная (параллелепипед),

2. Моноклинная (призма с параллелограммом в основании),

3. Ромбическая (прямоугольный параллелепипед),

4. Тетрагональная (прямоугольный параллелепипед с квадратом в основании),

5. Тригональная ,

6. Гексагональная (призма с основанием правильного центрированного
шестиугольника),

7. Кубическая (куб).


Многие вещества, в частности железо, медь, алмаз, хлорид натрия кристализуются в кубической системе . Простейшими формами этой системы являются куб, октаэдр, тетраэдр .


Магний, цинк, лёд, кварц кристализуются в гексагональной системе . Основные формы этой системы – шестигранные призмы и бипирамида .


Природные кристаллы, а также кристаллы, получаемые искусственным путём, редко в точности соответствуют теоретическим формам. Обычно при затвердевании расплавленного вещества кристаллы срастаются вместе и потому форма каждого из них оказывается не вполне правильной.


Однако как бы неравномерно не происходило развитие кристалла, как бы ни была искажена его форма, углы, под которыми сходятся грани кристалла у одного и того же вещества остаются постоянными.


Анизотропия


Особенности кристаллических тел не ограничиваются только формой кристаллов. Хотя вещество в кристалле совершенно однородно, многие из его физических свойств – прочность, теплопроводность, отношение к свету и др. – не всегда одинаковы по различным направлениям внутри кристалла. Эта важная особенность кристаллических веществ называется анизотропией .


Внутреннее строение кристаллов. Кристаллические решётки.


Внешняя форма кристалла отражает его внутреннее строение и обусловлена правильным расположением частиц, составляющих кристалл, - молекул, атомов или ионов.


Это расположение можно представить в виде кристаллической решётки – пространственного каркаса, образованного пересекающимися прямыми линиями. В точках пересечения линий – узлах решётки – лежат центры частиц.


В зависимости от природы частиц, находящихся в узлах кристаллической решётки, и от того, какие силы взаимодействия между ними преобладают в данном кристалле, различают следующие виды кристаллических решёток :


1. молекулярные ,

2. атомные ,

3. ионные и

4. металлические .


Молекулярные и атомные решётки присущи веществам с ковалентной связью, ионные – ионным соединениям, металические – металам и их сплавам.


  • Атомные кристаллические решётки

  • В узлах атомных решёток находятся атомы . Они связаны друг с другом ковалентной связью .


    Веществ, обладающих атомными решётками, сравнительно мало. К ним принадлежат алмаз, кремний и некоторые неорганические соединения.


    Эти вещества характеризуются высокой твёрдостью, они тугоплавки и нерастворимы практически ни в каких растворителях. Такие их свойства объясняются прочностью ковалентной связи .


  • Молекулярные кристаллические решётки

  • В узлах молекулярных решёток находятся молекулы . Они связаны друг с другом межмолекулярными силами .


    Веществ с молекулярной решёткой очень много. К ним принадлежат неметаллы , за исключением углерода и кремния, все органические соединения с неионной связью и многие неорганические соединения .


    Силы межмолекулярного взаимодействия значительно слабее сил ковалентной связи, поэтому молекулярные кристаллы имеют небольшую твёрдость, легкоплавки и летучи.


  • Ионные кристаллические решётки

  • В узлах ионных решёток располагаются, чередуясь положительно и отрицательно заряженные ионы . Они связаны друг с другом силами электростатического притяжения .


    К соединениям с ионной связью, образующим ионные решётки, относится большинство солей и небольшое число оксидов .


    По прочности ионные решётки уступают атомным, но превышают молекулярные.


    Ионные соединения имеют сравнительно высокие температуры плавления. Летучесть их в большинстве случаев не велика.


  • Металлические кристаллические решётки

  • В узлах металлических решёток находятся атомы металла, между которыми свободно движутся общие для этих атомов электроны .


    Наличием свободных электронов в кристаллических решётках металлов можно объяснить их многие свойства: пластичность, ковкость, металлический блеск, высокую электро- и теплопроводность


    Существуют вещества, в кристаллах которых значительную роль играют два рода взаимодействия между частицами. Так, в графите атомы углерода связаны друг с другом в одних направлениях ковалентной связью , а в других – металлической . Поэтому решётку графита можно рассматривать и как атомную , и как металлическую .


    Во многих неорганических соединениях, например, в BeO, ZnS, CuCl , связь между частицами, находящимися в узлах решётки, является частично ионной , а частично ковалентной . Поэтому решётки подобных соединений можно рассматривать как промежуточные между ионными и атомными .

    Аморфное состояние вещества

    Свойства аморфных веществ


    Среди твёрдых тел встречаются такие, в изломе которых нельзя обнаружить никаких признаков кристаллов. Например, если расколоть кусок обыкновенного стекла, то его излом окажется гладким и, в отличие от изломов кристаллов, ограничен не плоскими, а овальными поверхностями.


    Подобная же картина наблюдается при раскалывании кусков смолы, клея и некоторых других веществ. Такое состояние вещества называется аморфным .


    Различие между кристаллическими и аморфными телами особенно резко проявляется в их отношении к нагреванию.


    В то время как кристаллы каждого вещества плавятся при строго определённой температуре и при той же температуре происходит переход из жидкого состояния в твёрдое, аморфные тела не имеют постоянной температуры плавления . При нагревании аморфное тело постепенно размягчается, начинает растекаться и, наконец, становится совсем жидким. При охлаждении оно также постепенно затвердевает .


    В связи с отсутствием определённой температуры плавления аморфные тела обладают другой способностью: многие из них подобно жидкостям текучи , т.е. при длительном действии сравнительно небольших сил они постепенно изменяют свою форму. Например, кусок смолы, положенный на плоскую поверхность, в теплом помещении на несколько недель растекается, принимая форму диска.


    Строение аморфных веществ


    Различие между кристаллическим и аморфным состоянием вещества состоит в следующем.


    Упорядоченное расположение частиц в кристалле , отражаемое элементарной ячейкой, сохраняется на больших участках кристаллов, а в случае хорошо образованных кристаллов – во всём их объёме .


    В аморфных телах упорядоченность в расположении частиц наблюдается только на очень малых участках . Кроме того, в ряде аморфных тел даже эта местная упорядоченность носит лишь приблизительный характер.

    Это различие можно коротко сформулировать следующим образом:

    • структура кристаллов характеризуется дальним порядком ,
    • структура аморфных тел – ближним .

    Примеры аморфных веществ.


    К стабильно-аморфным веществам принадлежат стекла (искусственные и вулканические), естественные и искусственные смолы, клеи, парафин, воск и др.


    Переход из аморфного состояния в кристаллическое.


    Некоторые вещества могут находиться как в кристаллическом, так и в аморфном состоянии. Диоксид кремния SiO 2 встречается в природе в виде хорошо образованных кристаллов кварца , а также в аморфном состоянии (минерал кремень ).


    При этом кристаллическое состояние всегда более устойчиво . Поэтому самопроизвольный переход из кристаллического вещества в аморфное невозможен, а обратное превращение – самопроизвольный переход из аморфного состояния в кристаллическое – возможно и иногда наблюдается.


    Примером такого превращения служит расстеклование – самопроизволная кристаллизация стекла при повышенных температурах, сопровождающаяся его разрушением.


    Аморфное состояние многих веществ получается при высокой скорости затвердевания (остывания) жидкого расплава.


    У металлов и сплавов аморфное состояние формируется, как правило, если расплав охлаждается за время порядка долей-десятков миллисекунд. Для стёкол достаточно намного меньшей скорости охлаждения.


    Кварц (SiO 2 ) также имеет низкую скорость кристаллизации. Поэтому отлитые из него изделия получаются аморфными. Однако природный кварц, имевший сотни и тысячи лет для кристаллизации при остывании земной коры или глубинных слоёв вулканов, имеет крупнокристаллическое строение, в отличие от вулканического стекла, застывшего на поверхности и поэтому аморфного.

    Жидкости

    Жидкость – промежуточное состояние между твёрдым телом и газом.


    Жидкое состояние является промежуточным между газообразным и кристаллическим. По одним свойствам жидкости близки к газам , по другим – к твёрдым телам .


    С газами жидкости сближает, прежде всего, их изотропность и текучесть . Последняя обуславливает способность жидкости легко изменять свою форму.


    Однако высокая плотность и малая сжимаемость жидкостей приближает их к твёрдым телам .


    Способность жидкостей легко изменять свою форму говорит об отсутствии в них жёстких сил межмолекулярного взаимодействия.


    В то же время низкая сжимаемость жидкостей, обусловливающая способность сохранять постоянный при данной температуре объём, указывает на присутствие хотя и не жёстких, но всё же значительных сил взаимодействия между частицами.


    Соотношение потенциальной и кинетической энергии.


    Для каждого агрегатного состояния характерно своё соотношение между потенциальной и кинетической энергиями частиц вещества.


    У твёрдых тел средняя потенциальная энергия частиц больше их средней кинетической энергии. Поэтому в твёрдых телах частицы занимают определённые положения друг относительно друга и лишь колеблются относительно этих положений.


    Для газов соотношение энергий обратное , вследствии чего молекулы газов всегда находятся в состоянии хаотического движения и силы сцепления между молекулами практически отсутствуют, так что газ всегда занимает весь предоставленный ему объём.


    В случае жидкостей кинетическая и потенциальная энергия частиц приблизительно одинаковы , т.е. частицы связаны друг с другом, но не жёстко. Поэтому жидкости текучи, но имеют постоянный при данной температуре объём.


    Стуктуры жидкостей и аморфных тел схожи.


    В результате применения к жидкостям методов структурного анализа установлено, что по структуре жидкости подобны аморфным телам . В большинстве жидкостей наблюдается ближний порядок – число ближайших соседей у каждой молекулы и их взаимное расположение приблизительно одинаковы во всём объёме жидкости.


    Степень упорядоченности частиц у различных жидкостей различна. Кроме того, она изменяется при изменении температуры.


    При низких температурах, незначительно превышающих температуру плавления данного вещества, степень упорядоченности расположения частиц данной жидкости велика.


    С ростом температуры она падает и по мере нагревания свойства жидкости всё больше и больше приближаются к свойствам газа . При достижении критической температуры различие между жидкостью и газом исчезает.


    Вследствии сходства во внутренней структуре жидкостей и аморфных тел последние часто рассматриваются как жидкости с очень высокой вязкостью, а к твёрдым телам относят только вещества в кристаллическом состоянии.


    Уподобляя аморфные тела жидкостям, следует, однако, помнить, что в аморфных телах в отличие от обычных жидкостей частицы имеют незначительную подвижность – такую же как в кристаллах.

    Агрегатные состояния. Жидкости. Фазы в термодинамике. Фазовые переходы.

    Лекция 1.16

    Все вещества могут существовать в трех агрегатных состояниях - твердом, жидком и газообразном . Переходы между ними сопровождаются скачкообразным изменением ряда физических свойств (плотности, теплопроводности и др.).

    Агрегатное состояние зависит от физических условий, в которых находится вещество. Существование у вещества нескольких агрегатных состояний обусловлено различиями в тепловом движении его молекул (атомов) и в их взаимодействии при разных условиях.

    Газ - агрегатное состояние вещества, в котором частицы не связаны или весьма слабо связаны силами взаимодействия; кинетическая энергия теплового движения его частиц (молекул, атомов) значительно превосходит потенциальную энергию взаимодействий между ними, поэтому частицы движутся почти свободно, целиком заполняя сосуд, в котором находятся, и принимают его форму. В газообразном состоянии вещество не имеет ни собственного объема, ни собственной формы. Любое вещество можно перевести в газообразное, изменяя давление и температуру.

    Жидкость - агрегатное состояние вещества, промежуточное между твердым и газообразным. Для нее характерна большая подвижность частиц и малое свободное пространство между ними. Это приводит к тому, что жидкости сохраняют свой объем и принимают форму сосуда. В жидкости молекулы размещаются очень близко друг к другу. Поэтому плотность жидкости гораздо больше плотности газов (при нормальном давлении). Свойства жидкости по всем направлениям одинаковы (изотропны) за исключением жидких кристаллов. При нагревании или уменьшении плотности свойства жидкости, теплопроводность, вязкость меняются, как правило, в сторону сближения со свойствами газов.

    Тепловое движение молекул жидкости состоит из сочетания коллективных колебательных движений и происходящих время от времени скачков молекул из одних положений равновесия в другие.

    Твердые (кристаллические) тела - агрегатное состояние вещества, характеризующееся стабильностью формы и характером теплового движения атомов. Это движение представляет собой колебания атомов (или ионов), из которых состоит твердое тело. Амплитуда колебаний обычно мала по сравнению с межатомными расстояниями.

    Свойства жидкостей.

    Молекулы вещества в жидком состоянии расположены почти вплотную друг к другу. В отличие от твердых кристаллических тел, в которых молекулы образуют упорядоченные структуры во всем объеме кристалла и могут совершать тепловые колебания около фиксированных центров, молекулы жидкости обладают большей свободой. Каждая молекула жидкости, так же как и в твердом теле, «зажата» со всех сторон соседними молекулами и совершает тепловые колебания около некоторого положения равновесия. Однако, время от времени любая молекула может переместиться в соседнее вакантное место. Такие перескоки в жидкостях происходят довольно часто; поэтому молекулы не привязаны к определенным центрам, как в кристаллах, и могут перемещаться по всему объему жидкости. Этим объясняется текучесть жидкостей. Из-за сильного взаимодействия между близко расположенными молекулами они могут образовывать локальные (неустойчивые) упорядоченные группы, содержащие несколько молекул. Это явление называется ближним порядком .



    Вследствие плотной упаковки молекул сжимаемость жидкостей, т. е. изменение объема при изменении давления, очень мала; она в десятки и сотни тысяч раз меньше, чем в газах. Например, для изменения объема воды на 1 % нужно увеличить давление приблизительно в 200 раз. Такое увеличение давления по сравнению с атмосферным достигается на глубине около 2 км.

    Жидкости, как и твердые тела, изменяют свой объем при изменении температуры. Для не очень больших интервалов температур относительное изменение объема ΔV / V 0 пропорционально изменению температуры ΔT :

    Коэффициент β называют температурным коэффициентом объемногорасширения . Этот коэффициент у жидкостей в десятки раз больше, чем у твердых тел. У воды, например, при температуре 20 °С β в ≈ 2·10 –4 К –1 , у стали - β ст ≈ 3,6·10 –5 К –1 , у кварцевого стекла - β кв ≈ 9·10 –6 К –1 .

    Тепловое расширение воды имеет интересную и важную для жизни на Земле аномалию. При температуре ниже 4 °С вода расширяется при понижении температуры (β < 0). Максимум плотности ρ в = 10 3 кг/м 3 вода имеет при температуре 4 °С.

    При замерзании вода расширяется, поэтому лед остается плавать на поверхности замерзающего водоема. Температура замерзающей воды подо льдом равна 0 °С. В более плотных слоях воды у дна водоема температура оказывается порядка 4 °С. Благодаря этому, жизнь может существовать в воде замерзающих водоемов.

    Наиболее интересной особенностью жидкостей является наличие свободнойповерхности . Жидкость, в отличие от газов, не заполняет весь объем сосуда, в который она налита. Между жидкостью и газом (или паром) образуется граница раздела, которая находится в особых условиях по сравнению с остальной массой жидкости. Молекулы в пограничном слое жидкости, в отличие от молекул в ее глубине, окружены другими молекулами той же жидкости не со всех сторон. Силы межмолекулярного взаимодействия, действующие на одну из молекул внутри жидкости со стороны соседних молекул, в среднем взаимно скомпенсированы. Любая молекула в пограничном слое притягивается молекулами, находящимися внутри жидкости (силами, действующими на данную молекулу жидкости со стороны молекул газа (или пара) можно пренебречь). В результате появляется некоторая равнодействующая сила, направленная вглубь жидкости. Поверхностные молекулы силами межмолекулярного притяжения втягиваются внутрь жидкости. Но все молекулы, в том числе и молекулы пограничного слоя, должны находиться в состоянии равновесия. Это равновесие достигается за счет некоторого уменьшения расстояния между молекулами поверхностного слоя и их ближайшими соседями внутри жидкости. При уменьшении расстояния между молекулами возникают силы отталкивания. Если среднее расстояние между молекулами внутри жидкости равно r 0 , то молекулы поверхностного слоя упакованы несколько более плотно, а поэтому они обладают дополнительным запасом потенциальной энергии по сравнению с внутренними молекулами. Следует иметь в виду, что вследствие крайне низкой сжимаемости наличие более плотно упакованного поверхностного слоя не приводит к сколь нибудь заметному изменению объема жидкости. Если молекула переместится с поверхности внутрь жидкости, силы межмолекулярного взаимодействия совершат положительную работу. Наоборот, чтобы вытащить некоторое количество молекул из глубины жидкости на поверхность (т. е. увеличить площадь поверхности жидкости), внешние силы должны совершить положительную работу A внеш, пропорциональную изменению ΔS площади поверхности:

    A внеш = σΔS .

    Коэффициент σ называется коэффициентом поверхностного натяжения (σ > 0). Таким образом, коэффициент поверхностного натяжения равен работе, необходимой для увеличения площади поверхности жидкости при постоянной температуре на единицу.

    В СИ коэффициент поверхностного натяжения измеряется в джоулях наметр квадратный (Дж/м 2) или в ньютонах на метр(1 Н/м = 1 Дж/м 2).

    Следовательно, молекулы поверхностного слоя жидкости обладают избыточной по сравнению с молекулами внутри жидкости потенциальнойэнергией . Потенциальная энергия E р поверхности жидкости пропорциональна ее площади: (1.16.1)

    Из механики известно, что равновесным состояниям системы соответствует минимальное значение ее потенциальной энергии. Отсюда следует, что свободная поверхность жидкости стремится сократить свою площадь. По этой причине свободная капля жидкости принимает шарообразную форму. Жидкость ведет себя так, как будто по касательной к ее поверхности действуют силы, сокращающие (стягивающие) эту поверхность. Эти силы называются силами поверхностного натяжения .

    Наличие сил поверхностного натяжения делает поверхность жидкости похожей на упругую растянутую пленку, с той только разницей, что упругие силы в пленке зависят от площади ее поверхности (т. е. от того, как пленка деформирована), а силы поверхностного натяжения не зависят от площади поверхности жидкости.

    Силы поверхностного натяжения стремятся сократить поверхность пленки. Поэтому можно записать: (1.16.2)

    Таким образом, коэффициент поверхностного натяжения σ может быть определен как модуль силы поверхностного натяжения, действующей наединицу длины линии, ограничивающей поверхность (l - длина этой линии).

    Из-за действия сил поверхностного натяжения в каплях жидкости и внутри мыльных пузырей возникает избыточное давление Δp . Если мысленно разрезать сферическую каплю радиуса R на две половинки, то каждая из них должна находиться в равновесии под действием сил поверхностного натяжения, приложенных к границе разреза длиной 2πR и сил избыточного давления, действующих на площадь πR 2 сечения (рис.1.16.1). Условие равновесия записывается в виде

    Вблизи границы между жидкостью, твердым телом и газом форма свободной поверхности жидкости зависит от сил взаимодействия молекул жидкости с молекулами твердого тела (взаимодействием с молекулами газа (или пара) можно пренебречь). Если эти силы больше сил взаимодействия между молекулами самой жидкости, то жидкость смачивает поверхность твердого тела. В этом случае жидкость подходит к поверхности твердого тела под некоторым острым углом θ, характерным для данной пары жидкость – твердое тело. Угол θ называется краевым углом . Если силы взаимодействия между молекулами жидкости превосходят силы их взаимодействия с молекулами твердого тела, то краевой угол θ оказывается тупым (рис.1.16.2(2)). В этом случае говорят, что жидкость не смачивает поверхность твердого тела. В противном случае (угол - острый) жидкость смачивает поверхность (рис.1.16.2(1)). При полномсмачивании θ = 0, при полном несмачивании θ = 180°.

    Капиллярными явлениями называют подъем или опускание жидкости в трубках малого диаметра – капиллярах . Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются.

    На рис.1.16.3 изображена капиллярная трубка некоторого радиуса r , опущенная нижним концом в смачивающую жидкость плотности ρ. Верхний конец капилляра открыт. Подъем жидкости в капилляре продолжается до тех пор, пока сила тяжести действующая на столб жидкости в капилляре, не станет равной по модулю результирующей F н сил поверхностного натяжения, действующих вдоль границы соприкосновения жидкости с поверхностью капилляра: F т = F н, где F т = mg = ρh πr 2 g , F н = σ2πr cos θ.

    Отсюда следует:

    При полном смачивании θ = 0, cos θ = 1. В этом случае

    При полном несмачивании θ = 180°, cos θ = –1 и, следовательно, h < 0. Уровень несмачивающей жидкости в капилляре опускается ниже уровня жидкости в сосуде, в которую опущен капилляр.

    Вода практически полностью смачивает чистую поверхность стекла. Наоборот, ртуть полностью не смачивает стеклянную поверхность. Поэтому уровень ртути в стеклянном капилляре опускается ниже уровня в сосуде.