Как считаются дроби. Как решать примеры с дробями. Как найти разность дробей с одинаковыми знаменателями

С дробями ученики знакомятся еще в 5 классе. Раньше людей, которые умели производить действия с дробями, считали очень умными. Первой дробью была 1/2, то есть половина, дальше появились 1/3 и т.д. Несколько веков примеры считались слишком сложными. Сейчас же разработаны подробные правила по преобразованию дробей, сложению, умножению и другим действиям. Достаточно немного разобраться в материале, и решение будет даваться легко.

Обыкновенная дробь, которую называют простой дробью, записывается как деление двух чисел: m и n.

M - это делимое, то есть числитель дроби, а делитель n называют знаменателем.

Выделяют правильные дроби (m < n) а также неправильные (m > n).

Правильная дробь меньше единицы (к примеру 5/6 — это значит, что от единицы взято 5 частей; 2/8 — от единицы взято 2 части). Неправильная дробь равна или больше 1 (8/7 — единицей будет 7/7 и плюсом взята еще одна часть).

Так, единица, это когда числитель и знаменатель совпали (3/3, 12/12, 100/100 и другие).

Действия с обыкновенными дробями 6 класс

С простыми дробями можно производить следующие действия:

  • Расширять дробь. Если умножить верхнюю и нижнюю часть дроби на какое-либо одинаковое число (только не на ноль), то значение дроби не поменяется (3/5 = 6/10 (просто умножили на 2).
  • Сокращение дробей — схоже расширению, но тут делят на какое-либо число.
  • Сравнивать. Если у двух дробей числители одинаковыми, то большей окажется дробь с меньшим знаменателем. Если одинаковые знаменатели, то больше будет дробь с наибольшим числителем.
  • Выполнять сложение и вычитание. При одинаковых знаменателях это сделать просто (суммируем верхние части, а нижняя не меняется). При разных придется найти общий знаменатель и дополнительные множители.
  • Умножить и разделить дроби.

Примеры действий с дробями рассмотрим ниже.

Сокращенные дроби 6 класс

Сократить — значит поделить верхнюю и нижнюю часть дроби на какое-либо одинаковое число.

На рисунке представлены просты примеры сокращения. В первом варианте можно сразу догадаться, что числитель и знаменатель делятся на 2.

На заметку! Если число четное, то оно по-любому делится на 2. Четные числа — это 2, 4, 6…328 (заканчивается на четное) и т. д.

Во втором случае при делении 6 на 18 сразу видно, что числа делятся на 2. Разделив, получаем 3/9. Эта дробь делится еще на 3. Тогда в ответе получается 1/3. Если перемножить оба делителя: 2 на 3, то выйдет 6. Получается, что дробь была разделена на шестерку. Такое постепенное деление называется последовательным сокращением дроби на общие делители.

Кто-то сразу поделит на 6, кому-то понадобится деление частями. Главное, чтобы в конце осталась дробь, которую уже никак не сократить.

Отметим, что если число состоит из цифр, при сложении которых получится число, делящееся на 3, то и первоначальное также можно сократить на 3. Пример: число 341. Складываем цифры: 3 + 4 + 1 = 8 (8 на 3 не делится, значит, число 341 нельзя сократить на 3 без остатка). Другой пример: 264. Складываем: 2 + 6 + 4 = 12 (делится на 3). Получаем: 264: 3 = 88. Это упростит сокращение больших чисел.

Помимо метода последовательного сокращения дроби на общие делители есть и другие способы.

НОД — это самый большой делитель для числа. Найдя НОД для знаменателя и числителя, можно сразу сократить дробь на нужное число. Поиск осуществляется путем постепенного деления каждого числа. Далее смотрят, какие делители совпадают, если их несколько (как на картинке ниже), то нужно перемножить.

Смешанные дроби 6 класс

Все неправильные дроби можно превратить в смешанные, выделив в них целую часть. Целое число пишется слева.

Часто приходится из неправильной дроби делать смешанное число. Процесс преобразования на примере ниже: 22/4 = 22 делим на 4, получаем 5 целых (5 * 4 = 20). 22 — 20 = 2. Получаем 5 целых и 2/4 (знаменатель не меняется). Поскольку дробь можно сократить, то делим верхнюю и нижнюю часть на 2.

Смешанное число легко превратить в неправильную дробь (это необходимо при делении и умножении дробей). Для этого: целое число умножим на нижнюю часть дроби и прибавим к этому числитель. Готово. Знаменатель не меняется.

Вычисления с дробями 6 класс

Смешанные числа можно складывать. Если знаменатели одинаковые, то сделать это просто: складываем целые части и числители, знаменатель остается на месте.

При сложении чисел с разными знаменателями процесс сложнее. Сначала приводим числа к одному самому маленькому знаменателю (НОЗ).

В примере ниже для чисел 9 и 6 знаменателем будет 18. После этого нужны дополнительные множители. Чтобы их найти, следует 18 разделить на 9, так находится дополнительное число — 2. Его умножаем на числитель 4 получилась дробь 8/18). То же самое делают и со второй дробью. Преобразованные дроби уже складываем (целые числа и числители отдельно, знаменатель не меняем). В примере ответ пришлось преобразовать в правильную дробь (изначально числитель оказался больше знаменателя).

Обратите внимание, что при разности дробей алгоритм действий такой же.

При умножении дробей важно поместить обе под одну черту. Если число смешанное, то превращаем его в простую дробь. Далее умножаем верхнюю и нижнюю части и записываем ответ. Если видно, что дроби можно сократить, то сокращаем сразу.

В указанном примере сокращать ничего не пришлось, просто записали ответ и выделили целую часть.

В этом примере пришлось сократить числа под одной чертой. Хотя сокращать можно и готовый ответ.

При делении алгоритм почти такой же. Сначала превращаем смешанную дробь в неправильную, затем записываем числа под одной чертой, заменив деление умножением. Не забываем верхнюю и нижнюю часть второй дроби поменять местами (это правило деления дробей).

При необходимости сокращаем числа (в примере ниже сократили на пятерку и двойку). Неправильную дробь преобразуем, выделив целую часть.

Основные задачи на дроби 6 класс

На видео показано еще несколько задач. Для наглядности использованы графические изображения решений, которые помогут наглядно представить дроби.

Примеры умножения дроби 6 класс с пояснениями

Перемножающиеся дроби записываются под одной линией. После этого их сокращают путем деления на одни и те же числа (например, 15 в знаменателе и 5 в числителе можно разделить на пятерку).

Сравнение дробей 6 класс

Чтобы сравнить дроби, нужно запомнить два простых правила.

Правило 1. Если знаменатели разные

Правило 2. Когда знаменатели одинаковые

Например, сравним дроби 7/12 и 2/3.

  1. Смотрим на знаменатели, они не совпадают. Значит нужно найти общий.
  2. Для дробей общим знаменателем будет 12.
  3. Делим 12 сначала на нижнюю часть первой дроби: 12: 12 = 1 (это доп. множитель для 1-й дроби).
  4. Теперь 12 делим на 3, получаем 4 — доп. множитель 2-й дроби.
  5. Умножаем полученные цифры на числители, чтобы преобразовать дроби: 1 х 7 = 7 (первая дробь: 7/12); 4 х 2 = 8 (вторая дробь: 8/12).
  6. Теперь можем сравнивать: 7/12 и 8/12. Получилось: 7/12 < 8/12.

Чтобы представлять дроби лучше, можно для наглядности использовать рисунки, где предмет делится на части (к примеру, торт). Если требуется сравнить 4/7 и 2/3, то в первом случае торт делят на 7 частей и выбирают 4 из них. Во втором — делят на 3 части и берут 2. Невооруженным взглядом будет понятно, что 2/3 будет больше 4/7.

Примеры с дробями 6 класс для тренировки

В качестве тренировки можно выполнить следующие задания.

  • Сравнить дроби

  • выполнить умножение

Совет: если сложно найти наименьший общий знаменатель у дробей (особенно, если значения их небольшие), то можно перемножить знаменатель первой и второй дроби. Пример: 2/8 и 5/9. Найти их знаменатель просто: 8 умножаем на 9, получится 72.

Решение уравнений с дробями 6 класс

В решении уравнений требуется вспомнить действия с дробями: умножение, деление, вычитание и сложение. Если неизвестен один из множителей, то произведение (итог) делится на известный множитель, то есть дроби перемножаются (вторая переворачивается).

Если неизвестно делимое, то знаменатель умножается на делитель, а для поиска делителя нужно делимое разделить на частное.

Представим простые примеры решения уравнений:

Здесь требуется лишь произвести разность дробей, не приводя к общему знаменателю.

  • Деление на 1/2 заменили умножением на 2 (перевернули дробь).
  • Складывая 1/2 и 3/4, пришли к общему знаменателю 4. При этом для первой дроби понадобился дополнительный множитель 2, из 1/2 вышло 2/4.
  • Сложили 2/4 и 3/4 — получили 5/4.
  • Не забыли про умножение 5/4 на 2. Путем сокращения 2 и 4 получили 5/2.
  • Ответ получился в виде неправильной дроби. Ее можно преобразовать в 1 целую и 3/5.

    Во втором способе числитель и знаменатель умножили на 4, чтобы сократить нижнюю часть, а не переворачивать знаменатель.

    Инструкция

    Принято разделять обыкновенные и десятичные дроби, знакомство с которыми начинается еще в средней школе. В настоящее нет такой области знаний, где не применялось бы это . Даже в мы говорим первая 17 века, и все сразу , что имеются ввиду 1600-1625 года. Также часто приходится сталкиваться с элементарными действиями над дробями, а также их преобразованием из одного вида в другой.

    Приведение дробей к общему знаменателю является, пожалуй, наиболее важным действием над обыкновенными дробями. Это основа проведения абсолютно всех вычислений. Итак, допустим есть две дроби a/b и c/d. Тогда, для того чтобы привести их к общему знаменателю, нужно найти наименьшее общее кратное (М) чисел b и d, и далее умножить числитель первой дроби на (М/b), а числитель второй на (M/d).

    Сравнение дробей, еще одна немаловажная задача. Для того чтобы это сделать, приведите заданные простые дроби к общему знаменателю и потом сравните числители, чей числитель окажется больше, та дробь и больше.

    Для того чтобы выполнить сложение или вычитание обыкновенных дробей, нужно привести их к общему знаменателю, а после произвести нужное математическое действие с числителями этих дробей. Знаменатель же остается без изменения. Допустим нужно из a/b вычесть c/d. Для этого требуется найти наименьшее общее кратное M чисел b и d, и после вычесть из одного числителя другой, не меняя при этом знаменатель: (a*(M/b)-(c*(M/d))/M

    Достаточно просто умножить одну дробь на другую, для этого следует просто перемножить их числители и знаменатели:
    (a/b)*(c/d)=(a*c)/(b*d)Чтобы разделить одну дробь на другую, нужно дробь делимого умножить на дробь обратную делителю. (a/b)/(c/d)=(a*d)/(b*c)
    Стоить напомнить, что для того чтобы получить обратную дробь, нужно числитель и знаменатель поменять местами.

    Чтоб сложить 2 дроби с одинаковыми знаменателями , необходимо сложить их числители, а знаменатели оставить без изменений. Сложение дробей , примеры :

    Общая формула для сложения обыкновенных дробей и вычитания дробей с одинаковыми знаменателями:

    Обратите внимание! Проверьте нельзя ли сократить дробь , которую вы получили, записывая ответ.

    Сложение дробей с разными знаменателями.

    Правила сложения дробей с разными знаменателями:

    • приводим дроби к наименьшему общему знаменателю (НОЗ) . Для этого находим наименьшее общее кратное (НОК) знаменателей;
    • складываем числители дробей, а знаменатели оставляем не меняя;
    • сокращаем дробь, которую получили;
    • если получили неправильная дробь - преобразовываем неправильную дробь в смешанную дробь .

    Примеры сложения дробей с разными знаменателями:

    Сложение смешанных чисел (смешанных дробей).

    Правила сложения смешанных дробей:

    • приводим дробные части этих чисел к наименьшему общему знаменателю (НОЗ);
    • отдельно складываем целые части и отдельно дробные части, складываем результаты;
    • если при сложении дробных частей получили неправильную дробь, выделяем целую часть из этой дроби и прибавляем ее к полученной целой части;
    • сокращаем полученную дробь.

    Пример сложения смешанной дроби :

    Сложение десятичных дробей.

    При сложении десятичных дробей процесс записывают «столбиком» (как обычное умножение столбиком), так чтобы одноимённые разряды находились друг под другом без смещения. Запятые обязательно выравниваем чётко друг под другом.

    Правила сложения десятичных дробей:

    1. Если нужно, уравниваем количество знаков после запятой. Для этого добавляем нули к необходимой дроби.

    2. Записываем дроби так, чтобы запятые находились друг под другом.

    3. Складываем дроби, не обращая внимания на запятую.

    4. Ставим запятую в сумме под запятыми, дробей, которые складываем.

    Обратите внимание! Когда у заданных десятичных дробей разное количество знаков (цифр) после запятой, то к дроби, у которой меньше десятичных знаков приписываем нужное количество нулей, для уравнения в дробях число знаков после запятой.

    Разберёмся на примере . Найти сумму десятичных дробей:

    0,678 + 13,7 =

    Уравниваем число знаков после запятой в десятичных дробях. Дописываем 2 нуля справа к десятичной дроби 13,7 .

    0,678 + 13,700 =

    Записываем ответ:

    0,678 + 13,7 = 14,378

    Если сложение десятичных дробей вы освоили достаточно хорошо, то недостающие нули можно дописывать в уме.

    Данная статья начинает изучение действий с алгебраическими дробями: рассмотрим подробно такие действия как сложение и вычитание алгебраических дробей. Разберем схему сложения и вычитания алгебраических дробей как с одинаковыми знаменателями, так и с разными. Изучим, как сложить алгебраическую дробь с многочленом и как произвести их вычитание. На конкретных примерах поясним каждый шаг поиска решения задач.

    Действия сложения и вычитания при одинаковых знаменателях

    Схема сложения обыкновенных дробей применима и для алгебраических. Мы знаем, что при сложении или вычитании обыкновенных дробей с одинаковыми знаменателями необходимо сложить или вычесть их числители, а знаменатель остается исходным.

    К примеру: 3 7 + 2 7 = 3 + 2 7 = 5 7 и 5 11 - 4 11 = 5 - 4 11 = 1 11 .

    Соответственно аналогичным образом записывается правило сложения и вычитания алгебраических дробей с одинаковыми знаменателями:

    Определение 1

    Чтобы осуществить сложение или вычитание алгебраических дробей с одинаковыми знаменателями, нужно соответственно сложить или вычесть числители исходных дробей, а знаменатель записать без изменений.

    Данное правило дает возможность сделать вывод, что результат сложения или вычитания алгебраических дробей - новая алгебраическая дробь (в частном случае: многочлен, одночлен или число).

    Укажем пример применения сформулированного правила.

    Пример 1

    Заданы алгебраические дроби: x 2 + 2 · x · y - 5 x 2 · y - 2 и 3 - x · y x 2 · y - 2 . Необходимо осуществить их сложение.

    Решение

    Исходные дроби содержат одинаковые знаменатели. Согласно правилу, выполним сложение числителей заданных дробей, а знаменатель оставим неизменным.

    Сложив многочлены, являющиеся числителями исходных дробей, получим: x 2 + 2 · x · y − 5 + 3 − x · y = x 2 + (2 · x · y − x · y) − 5 + 3 = x 2 + x · y − 2 .

    Тогда искомая сумма будет записана как: x 2 + x · y - 2 x 2 · y - 2 .

    В практике, как во многих случаях, решение приводится цепочкой равенств, наглядно показывающей все этапы решения:

    x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + 2 · x · y - 5 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2

    Ответ: x 2 + 2 · x · y - 5 x 2 · y - 2 + 3 - x · y x 2 · y - 2 = x 2 + x · y - 2 x 2 · y - 2 .

    Результатом сложения или вычитания может стать сократимая дробь, в этом случае оптимально ее сократить.

    Пример 2

    Необходимо вычесть из алгебраической дроби x x 2 - 4 · y 2 дробь 2 · y x 2 - 4 · y 2 .

    Решение

    Знаменатели исходных дробей равны. Произведем действия с числителями, а именно: вычтем из числителя первой дроби числитель второй, после чего запишем результат, оставляя знаменатель неизменным:

    x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = x - 2 · y x 2 - 4 · y 2

    Мы видим, что полученная дробь – сократимая. Осуществим ее сокращение, преобразовав знаменатель при помощи формулы разности квадратов:

    x - 2 · y x 2 - 4 · y 2 = x - 2 · y (x - 2 · y) · (x + 2 · y) = 1 x + 2 · y

    Ответ: x x 2 - 4 · y 2 - 2 · y x 2 - 4 · y 2 = 1 x + 2 · y .

    По такому же принципу складываются или вычитаются три и более алгебраических дробей при одинаковых знаменателях. К примеру:

    1 x 5 + 2 · x 3 - 1 + 3 · x - x 4 x 5 + 2 · x 3 - 1 - x 2 x 5 + 2 · x 3 - 1 - 2 · x 3 x 5 + 2 · x 3 - 1 = 1 + 3 · x - x 4 - x 2 - 2 · x 3 x 5 + 2 · x 3 - 1

    Действия сложения и вычитания при разных знаменателях

    Вновь обратимся к схеме действий с обыкновенными дробями: чтобы выполнить сложение или вычитание обыкновенных дробей с разными знаменателями, необходимо привести их к общему знаменателю, а затем сложить полученные дроби с одинаковыми знаменателями.

    К примеру, 2 5 + 1 3 = 6 15 + 5 15 = 11 15 или 1 2 - 3 7 = 7 14 - 6 14 = 1 14 .

    Так же по аналогии сформулируем правило сложения и вычитания алгебраических дробей с разными знаменателями:

    Определение 2

    Чтобы осуществить сложение или вычитание алгебраических дробей с разными знаменателями, необходимо:

    • исходные дроби привести к общему знаменателю;
    • выполнить сложение или вычитание полученных дробей с одинаковыми знаменателями.

    Очевидно, что ключевым здесь будет навык приведения алгебраических дробей к общему знаменателю. Разберем подробнее.

    Приведение алгебраических дробей к общему знаменателю

    Чтобы привести алгебраические дроби к общему знаменателю, необходимо осуществить тождественное преобразование заданных дробей, в результате которого знаменатели исходных дробей становятся одинаковыми. Здесь оптимально действовать по следующему алгоритму приведения алгебраических дробей к общему знаменателю:

    • сначала определяем общий знаменатель алгебраических дробей;
    • затем находим дополнительные множители для каждой из дробей, разделив общий знаменатель на знаменатели исходных дробей;
    • последним действием числители и знаменатели заданных алгебраических дробей умножаются на соответствующие дополнительные множители.
    Пример 3

    Заданы алгебраические дроби: a + 2 2 · a 3 - 4 · a 2 , a + 3 3 · a 2 - 6 · a и a + 1 4 · a 5 - 16 · a 3 . Необходимо привести их к общему знаменателю.

    Решение

    Действуем по указанному выше алгоритму. Определим общий знаменатель исходных дробей. С этой целью разложим знаменатели заданных дробей на множители: 2 · a 3 − 4 · a 2 = 2 · a 2 · (a − 2) , 3 · a 2 − 6 · a = 3 · a · (a − 2) и 4 · a 5 − 16 · a 3 = 4 · a 3 · (a − 2) · (a + 2) . Отсюда можем записать общий знаменатель: 12 · a 3 · (a − 2) · (a + 2) .

    Теперь нам предстоит найти дополнительные множители. Разделим, согласно алгоритму, найденный общий знаменатель на знаменатели исходных дробей:

    • для первой дроби: 12 · a 3 · (a − 2) · (a + 2) : (2 · a 2 · (a − 2)) = 6 · a · (a + 2) ;
    • для второй дроби: 12 · a 3 · (a − 2) · (a + 2) : (3 · a · (a − 2)) = 4 · a 2 · (a + 2);
    • для третьей дроби: 12 · a 3 · (a − 2) · (a + 2) : (4 · a 3 · (a − 2) · (a + 2)) = 3 .

    Следующий шаг - умножение числителей и знаменателей заданных дробей на найденные дополнительные множители:

    a + 2 2 · a 3 - 4 · a 2 = (a + 2) · 6 · a · (a + 2) (2 · a 3 - 4 · a 2) · 6 · a · (a + 2) = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) a + 3 3 · a 2 - 6 · a = (a + 3) · 4 · a 2 · (a + 2) 3 · a 2 - 6 · a · 4 · a 2 · (a + 2) = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) a + 1 4 · a 5 - 16 · a 3 = (a + 1) · 3 (4 · a 5 - 16 · a 3) · 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2)

    Ответ: a + 2 2 · a 3 - 4 · a 2 = 6 · a · (a + 2) 2 12 · a 3 · (a - 2) · (a + 2) ; a + 3 3 · a 2 - 6 · a = 4 · a 2 · (a + 3) · (a + 2) 12 · a 3 · (a - 2) · (a + 2) ; a + 1 4 · a 5 - 16 · a 3 = 3 · (a + 1) 12 · a 3 · (a - 2) · (a + 2) .

    Так, мы привели исходные дроби к общему знаменателю. В случае необходимости далее можно преобразовать полученный результат в вид алгебраических дробей, осуществив умножение многочленов и одночленов в числителях и знаменателях.

    Уточним также такой момент: найденный общий знаменатель оптимально оставлять в виде произведения на случай необходимости сократить конечную дробь.

    Мы рассмотрели подробно схему приведения исходных алгебраических дробей к общему знаменателю, теперь можем приступить к разбору примеров на сложение и вычитание дробей с разными знаменателями.

    Пример 4

    Заданы алгебраические дроби: 1 - 2 · x x 2 + x и 2 · x + 5 x 2 + 3 · x + 2 . Необходимо осуществить действие их сложения.

    Решение

    Исходные дроби имеют разные знаменатели, поэтому первым действием приведем их к общему знаменателю. Раскладываем знаменатели на множители: x 2 + x = x · (x + 1) , а x 2 + 3 · x + 2 = (x + 1) · (x + 2) , т.к. корни квадратного трехчлена x 2 + 3 · x + 2 это числа: - 1 и - 2 . Определяем общий знаменатель: x · (x + 1) · (x + 2) , тогда дополнительные множители будут: x + 2 и – x для первой и второй дробей соответственно.

    Таким образом: 1 - 2 · x x 2 + x = 1 - 2 · x x · (x + 1) = (1 - 2 · x) · (x + 2) x · (x + 1) · (x + 2) = x + 2 - 2 · x 2 - 4 · x x · (x + 1) · x + 2 = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) и 2 · x + 5 x 2 + 3 · x + 2 = 2 · x + 5 (x + 1) · (x + 2) = 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 · x 2 + 5 · x x · (x + 1) · (x + 2)

    Теперь сложим дроби, которые мы привели к общему знаменателю:

    2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · 2 · x x · (x + 1) · (x + 2)

    Полученную дробь возможно сократить на общий множитель x + 1:

    2 + 2 · x x · (x + 1) · (x + 2) = 2 · (x + 1) x · (x + 1) · (x + 2) = 2 x · (x + 2)

    И, напоследок, полученный результат запишем в виде алгебраической дроби, заменив произведение в знаменателе многочленом:

    2 x · (x + 2) = 2 x 2 + 2 · x

    Запишем ход решения кратко в виде цепочки равенств:

    1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 1 - 2 · x x · (x + 1) + 2 · x + 5 (x + 1) · (x + 2) = = 1 - 2 · x · (x + 2) x · x + 1 · x + 2 + 2 · x + 5 · x (x + 1) · (x + 2) · x = 2 - 2 · x 2 - 3 · x x · (x + 1) · (x + 2) + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = = 2 - 2 · x 2 - 3 · x + 2 · x 2 + 5 · x x · (x + 1) · (x + 2) = 2 · x + 1 x · (x + 1) · (x + 2) = 2 x · (x + 2) = 2 x 2 + 2 · x

    Ответ: 1 - 2 · x x 2 + x + 2 · x + 5 x 2 + 3 · x + 2 = 2 x 2 + 2 · x

    Обратите внимание еще на такую деталь: перед тем, как алгебраические дроби сложить или вычесть, при наличии возможности их желательно преобразовать с целью упрощения.

    Пример 5

    Необходимо осуществить вычитание дробей: 2 1 1 3 · x - 2 21 и 3 · x - 1 1 7 - 2 · x .

    Решение

    Преобразуем исходные алгебраические дроби для упрощения дальнейшего решения. Вынесем за скобки числовые коэффициенты переменных в знаменателе:

    2 1 1 3 · x - 2 21 = 2 4 3 · x - 2 21 = 2 4 3 · x - 1 14 и 3 · x - 1 1 7 - 2 · x = 3 · x - 1 - 2 · x - 1 14

    Данное преобразование однозначно дало нам пользу: мы явно видим наличие общего множителя.

    Избавимся вообще от числовых коэффициентов в знаменателях. Для этого используем основное свойство алгебраических дробей: числитель и знаменатель первой дроби умножим на 3 4 , а второй на - 1 2 , тогда получим:

    2 4 3 · x - 1 14 = 3 4 · 2 3 4 · 4 3 · x - 1 14 = 3 2 x - 1 14 и 3 · x - 1 - 2 · x - 1 14 = - 1 2 · 3 · x - 1 - 1 2 · - 2 · x - 1 14 = - 3 2 · x + 1 2 x - 1 14 .

    Совершим действие, которое нам позволит избавиться от дробных коэффициентов: умножим полученные дроби на 14:

    3 2 x - 1 14 = 14 · 3 2 14 · x - 1 14 = 21 14 · x - 1 и - 3 2 · x + 1 2 x - 1 14 = 14 · - 3 2 · x + 1 2 x - 1 14 = - 21 · x + 7 14 · x - 1 .

    Наконец, выполним требуемое в условии задачи действие – вычитание:

    2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 14 · x - 1 - - 21 · x + 7 14 · x - 1 = 21 - - 21 · x + 7 14 · x - 1 = 21 · x + 14 14 · x - 1

    Ответ: 2 1 1 3 · x - 2 21 - 3 · x - 1 1 7 - 2 · x = 21 · x + 14 14 · x - 1 .

    Сложение и вычитание алгебраической дроби и многочлена

    Данное действие сводится также к сложению или вычитанию алгебраических дробей: необходимо представить исходный многочлен как дробь со знаменателем 1 .

    Пример 6

    Необходимо произвести сложение многочлена x 2 − 3 с алгебраической дробью 3 · x x + 2 .

    Решение

    Запишем многочлен как алгебраическую дробь со знаменателем 1: x 2 - 3 1

    Теперь можем выполнить сложение по правилу сложения дробей с разными знаменателями:

    x 2 - 3 + 3 · x x + 2 = x 2 - 3 1 + 3 · x x + 2 = x 2 - 3 · (x + 2) 1 · x + 2 + 3 · x x + 2 = = x 3 + 2 · x 2 - 3 · x - 6 x + 2 + 3 · x x + 2 = x 3 + 2 · x 2 - 3 · x - 6 + 3 · x x + 2 = = x 3 + 2 · x 2 - 6 x + 2

    Ответ: x 2 - 3 + 3 · x x + 2 = x 3 + 2 · x 2 - 6 x + 2 .

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

    Следующее действие, которое можно выполнять с обыкновенными дробями, - вычитание. В рамках этого материала мы рассмотрим, как правильно вычислить разность дробей с одинаковыми и разными знаменателями, как вычесть дробь из натурального числа и наоборот. Все примеры будут проиллюстрированы задачами. Заранее уточним, что мы будем разбирать лишь случаи, когда разность дробей дает в итоге положительное число.

    Как найти разность дробей с одинаковыми знаменателями

    Начнем сразу с наглядного примера: допустим, у нас есть яблоко, которое разделили на восемь частей. Оставим пять частей на тарелке и заберем две из них. Это действие можно записать так:

    В итоге у нас осталось 3 восьмых доли, поскольку 5 − 2 = 3 . Получается, что 5 8 - 2 8 = 3 8 .

    Благодаря этому простому примеру мы увидели, как именно работает правило вычитания для дробей, знаменатели которых одинаковы. Сформулируем его.

    Определение 1

    Чтобы найти разность дробей с одинаковыми знаменателями, нужно из числителя одной вычесть числитель другой, а знаменатель оставить прежним. Это правило можно записать в виде a b - c b = a - c b .

    Такую формулу мы будем использовать и в дальнейшем.

    Возьмем конкретные примеры.

    Пример 1

    Вычтите из дроби 24 15 обыкновенную дробь 17 15 .

    Решение

    Мы видим, что эти дроби имеют одинаковые знаменатели. Поэтому все, что нам нужно сделать, – это вычесть 17 из 24 . Мы получаем 7 и дописываем к ней знаменатель, получаем 7 15 .

    Наши подсчеты можно записать так: 24 15 - 17 15 = 24 - 17 15 = 7 15

    Если необходимо, можно сократить сложную дробь или выделить целую часть из неправильной, чтобы считать было удобнее.

    Пример 2

    Найдите разность 37 12 - 15 12 .

    Решение

    Воспользуемся описанной выше формулой и подсчитаем: 37 12 - 15 12 = 37 - 15 12 = 22 12

    Легко заметить, что числитель и знаменатель можно разделить на 2 (об этом мы уже говорили ранее, когда разбирали признаки делимости). Сократив ответ, получим 11 6 . Это неправильная дробь, из которой мы выделим целую часть: 11 6 = 1 5 6 .

    Как найти разность дробей с разными знаменателями

    Такое математическое действие можно свести к тому, что мы уже описывали выше. Для этого просто приведем нужные дроби к одному знаменателю. Сформулируем определение:

    Определение 2

    Чтобы найти разность дробей, у которых разные знаменатели, необходимо привести их к одному знаменателю и найти разность числителей.

    Рассмотрим на примере, как это делается.

    Пример 3

    Вычтите из 2 9 дробь 1 15 .

    Решение

    Знаменатели разные, и нужно привести их к наименьшему общему значению. В данном случае НОК равно 45 . Для первой дроби необходим дополнительный множитель 5 , а для второй – 3 .

    Подсчитаем: 2 9 = 2 · 5 9 · 5 = 10 45 1 15 = 1 · 3 15 · 3 = 3 45

    У нас получились две дроби с одинаковым знаменателем, и теперь мы легко можем найти их разность по описанному ранее алгоритму: 10 45 - 3 45 = 10 - 3 45 = 7 45

    Краткая запись решения выглядит так: 2 9 - 1 15 = 10 45 - 3 45 = 10 - 3 45 = 7 45 .

    Не стоит пренебрегать сокращением результата или выделением из него целой части, если это необходимо. В данном примере нам этого не нужно делать.

    Пример 4

    Найдите разность 19 9 - 7 36 .

    Решение

    Приведем указанные в условии дроби к наименьшему общему знаменателю 36 и получим соответственно 76 9 и 7 36 .

    Считаем ответ: 76 36 - 7 36 = 76 - 7 36 = 69 36

    Результат можно сократить на 3 и получить 23 12 . Числитель больше знаменателя, а значит, мы можем выделить целую часть. Итоговый ответ - 1 11 12 .

    Краткая запись всего решения - 19 9 - 7 36 = 1 11 12 .

    Как вычесть из обыкновенной дроби натуральное число

    Такое действие также легко свести к простому вычитанию обыкновенных дробей. Это можно сделать, представив натуральное число в виде дроби. Покажем на примере.

    Пример 5

    Найдите разность 83 21 – 3 .

    Решение

    3 – то же самое, что и 3 1 . Тогда можно подсчитать так: 83 21 - 3 = 20 21 .

    Если в условии необходимо вычесть целое число из неправильной дроби, удобнее сначала выделить из нее целое, записав ее в виде смешанного числа. Тогда предыдущий пример можно решить иначе.

    Из дроби 83 21 при выделении целой части получится 83 21 = 3 20 21 .

    Теперь просто вычтем 3 из него: 3 20 21 - 3 = 20 21 .

    Как вычесть обыкновенную дробь из натурального числа

    Это действие делается аналогично предыдущему: мы переписываем натуральное число в виде дроби, приводим обе к единому знаменателю и находим разность. Проиллюстрируем это примером.

    Пример 6

    Найдите разность: 7 - 5 3 .

    Решение

    Сделаем 7 дробью 7 1 . Делаем вычитание и преобразуем конечный результат, выделяя из него целую часть: 7 - 5 3 = 5 1 3 .

    Есть и другой способ произвести расчеты. Он обладает некоторыми преимуществами, которыми можно воспользоваться в тех случаях, если числители и знаменатели дробей в задаче – большие числа.

    Определение 3

    Если та дробь, которую нужно вычесть, является правильной, то натуральное число, из которого мы вычитаем, нужно представить в виде суммы двух чисел, одно из которых равно 1 . После этого нужно вычесть нужную дробь из единицы и получить ответ.

    Пример 7

    Вычислите разность 1 065 - 13 62 .

    Решение

    Дробь, которую нужно вычесть – правильная, ведь ее числитель меньше знаменателя. Поэтому нам нужно отнять единицу от 1065 и вычесть из нее нужную дробь: 1065 - 13 62 = (1064 + 1) - 13 62

    Теперь нам нужно найти ответ. Используя свойства вычитания, полученное выражение можно записать как 1064 + 1 - 13 62 . Подсчитаем разность в скобках. Для этого единицу представим как дробь 1 1 .

    Получается, что 1 - 13 62 = 1 1 - 13 62 = 62 62 - 13 62 = 49 62 .

    Теперь вспомним про 1064 и сформулируем ответ: 1064 49 62 .

    Используем старый способ, чтобы доказать, что он менее удобен. Вот такие вычисления вышли бы у нас:

    1065 - 13 62 = 1065 1 - 13 62 = 1065 · 62 1 · 62 - 13 62 = 66030 62 - 13 62 = = 66030 - 13 62 = 66017 62 = 1064 4 6

    Ответ тот же, но подсчеты, очевидно, более громоздкие.

    Мы рассмотрели случай, когда нужно вычесть правильную дробь. Если она неправильная, мы заменяем ее смешанным числом и производим вычитание по знакомым правилам.

    Пример 8

    Вычислите разность 644 - 73 5 .

    Решение

    Вторая дробь – неправильная, и от нее надо отделить целую часть.

    Теперь вычисляем аналогично предыдущему примеру: 630 - 3 5 = (629 + 1) - 3 5 = 629 + 1 - 3 5 = 629 + 2 5 = 629 2 5

    Свойства вычитания при работе с дробями

    Те свойства, которыми обладает вычитание натуральных чисел, распространяются и на случаи вычитания обыкновенных дробей. Рассмотрим, как использовать их при решении примеров.

    Пример 9

    Найдите разность 24 4 - 3 2 - 5 6 .

    Решение

    Схожие примеры мы уже решали, когда разбирали вычитание суммы из числа, поэтому действуем по уже известному алгоритму. Сначала подсчитаем разность 25 4 - 3 2 , а потом отнимем от нее последнюю дробь:

    25 4 - 3 2 = 24 4 - 6 4 = 19 4 19 4 - 5 6 = 57 12 - 10 12 = 47 12

    Преобразуем ответ, выделив из него целую часть. Итог - 3 11 12 .

    Краткая запись всего решения:

    25 4 - 3 2 - 5 6 = 25 4 - 3 2 - 5 6 = 25 4 - 6 4 - 5 6 = = 19 4 - 5 6 = 57 12 - 10 12 = 47 12 = 3 11 12

    Если в выражении присутствуют и дроби, и натуральные числа, то рекомендуется при подсчетах сгруппировать их по типам.

    Пример 10

    Н айдите разность 98 + 17 20 - 5 + 3 5 .

    Решение

    Зная основные свойства вычитания и сложения, мы можем сгруппировать числа следующим образом: 98 + 17 20 - 5 + 3 5 = 98 + 17 20 - 5 - 3 5 = 98 - 5 + 17 20 - 3 5

    Завершим расчеты: 98 - 5 + 17 20 - 3 5 = 93 + 17 20 - 12 20 = 93 + 5 20 = 93 + 1 4 = 93 1 4

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter