Операции над множествами и их свойства. Множества. Операции над множествами Операции над множествами

Основные понятия теории множеств

Понятие множества является фундаментальным понятием современной математики. Мы будем считать его первоначальным и теорию множеств строить интуитивно. Дадим описание этого первоначального понятия.

Множество – это совокупность объектов (предметов или понятий), которая мыслится как единое целое. Объекты, входящие в эту совокупность, называются элементами множества.

Можно говорить о множестве студентов первого курса математического факультета, о множестве рыб в океане и т.д. Математика обычно интересуется множеством математических объектов: множество рациональных чисел, множество прямоугольников и т.д.

Множества будем обозначать большими буквами латинского алфавита, а его элементы малыми.

Если – элемент множества M , то говорят « принадлежит M » и пишут: . Если некоторый объект не является элементом множества, то говорят « не принадлежит M » и пишут (иногда ).

Существует два основных способа задания множеств: перечисление его элементов и указание характеристического свойства его элементов. Первый из этих способов применяется, в основном, для конечных множеств. При перечислении элементов рассматриваемого множества его элементы обрамляются фигурными скобками. Например, обозначает множество, элементами которого являются числа 2, 4 , 7 и только они. Этот способ применим не всегда, так как, например, множество всех действительных чисел таким образом задать невозможно.

Характеристическое свойство элементов множества M – это такое свойство, что всякий элемент, обладающий этим свойством, принадлежит M , а всякий элемент, не обладающий этим свойством, не принадлежит M . Множество элементов, обладающих свойством , обозначается так:

или .

Наиболее часто встречающиеся множества имеют свои особые обозначения. В дальнейшем будем придерживаться следующих обозначений:

N = – множество всех натуральных чисел;

Z = – множество всех целых чисел;

– множество всех рациональных чисел;

R – множество всех действительных (вещественных) чисел, т.е. рациональных чисел (бесконечных десятичных периодических дробей) и иррациональных чисел (бесконечных десятичных непериодических дробей);



– множество всех комплексных чисел.

Приведем более специальные примеры задания множеств с помощью указания характеристического свойства.

Пример 1. Множество всех натуральных делителей числа 48 можно записать так: (запись используется только для целых чисел , и означает, что делится на ).

Пример 2. Множество всех положительных рациональных чисел, меньших 7, записывается следующим образом: .

Пример 3. – интервал действительных чисел с концами 1 и 5; – отрезок действительных чисел с концами 2 и 7.

Слово «множество» наводит на мысль, что оно содержит много элементов. Но это не всегда так. В математике могут рассматриваться множества, содержащие только один элемент. Например, множество целых корней уравнения . Более того, удобно говорить о множестве, не содержащем ни одного элемента. Такое множество называется пустым и обозначается через Ø. Например, пустым является множество действительных корней уравнения .

Определение 1. Множества и называются равными (обозначается А=В ), если эти множества состоят из одних и тех же элементов.

Определение 2. Если каждый элемент множества принадлежит множеству , то называют подмножеством множества .

Обозначения: (« включается в »); (« включает »).

Ясно, что Ø и само множество являются подмножествами множества . Всякое другое подмножество множества называется его правильной частью . Если и , то говорят, что « А собственное подмножество »или что «А строго включается в » и пишут .

Очевидно следующее утверждение: множества и равны тогда и только тогда, когда и .

На этом утверждении основан универсальный метод доказательства равенства двух множеств : чтобы доказать, что множества и равны, достаточно показать, что , а является подмножеством множества .

Это наиболее употребительный способ, хотя и не единственный. Позже, познакомившись с операциями над множествами и их свойствами, мы укажем другой способ доказательства равенства двух множеств – с помощью преобразований .

В заключение заметим, что часто в той или иной математической теории имеют дело с подмножествами одного и того же множества U , которое называют универсальным в этой теории. Например, в школьной алгебре и математическом анализе универсальным является множество R действительных чисел, в геометрии – множество точек пространства.

Операции над множествами и их свойства

Над множествами можно выполнять действия (операции), напоминающие сложение, умножение и вычитание.

Определение 1. Объединением множеств и называется множество, обозначаемое через , каждый элемент которого принадлежит хотя бы одному из множеств или .

Сама операция , в результате которой получается такое множество, называется объединением.

Краткая запись определения 1:

Определение 2. Пересечением множеств и называется множество, обозначаемое через , содержащее все те и только те элементы, каждый из которых принадлежит и , и .

Сама операция , в результате которой получается множество , называется пересечением.

Краткая запись определения 2:

Например, если , , то , .

Множества можно изображать в виде геометрических фигур, что позволяет наглядно иллюстрировать операции над множествами. Такой метод был предложен Леонардом Эйлером (1707–1783) для анализа логических рассуждений, широко применялся и получил дальнейшее развитие в трудах английского математика Джона Венна (1834–1923). Поэтому такие рисунки называют диаграммами Эйлера-Венна .

Операции объединения и пересечения множеств можно проиллюстрировать диаграммами Эйлера–Венна следующим образом:


– заштрихованная часть; – заштрихованная часть.

Можно определить объединение и пересечение любой совокупности множеств , где – некоторое множество индексов.

Определение . Объединением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит по крайней мере одному из множеств .

Определение . Пересечением совокупности множеств называется множество , состоящее из всех тех и только тех элементов, каждый из которых принадлежит любому из множеств .

В случае, когда множество индексов конечно, например, , то для обозначения объединения и пересечения совокупности множеств в этом случае обычно пользуются обозначениями:

и .

Например, если , , , то , .

С понятиями объединения и пересечения множеств неоднократно встречаются в школьном курсе математики.

Пример 1. Множество М решений системы неравенств

является пересечением множеств решений каждого из неравенств этой системы: .

Пример 2. Множество М решений системы

является пересечением множеств решений каждого из неравенств этой системы. Множество решений первого уравнения – множество точек прямой , т.е. . Множество . Множество состоит из одного элемента – точки пересечения прямых.

Пример 3. Множество решений уравнения

где , является объединением множеств решений каждого из уравнений , , т.е.

Определение 3. Разностью множеств и называется множество, обозначаемое через , и состоящее из всех тех и только тех элементов, которые принадлежат , но не принадлежат .– заштрихованная часть; . с операциями объединения, пересечения и дополнения. Полученную математическую структуру называют алгеброй множеств илиалгеброй Булямножеств (вчесть ирландского математика и логика Джорджа Буля (1816–1864)). Через будем обозначать множество всех подмножеств произвольного множества и называть его булеаном множества .

Перечисленные ниже равенства справедливы для любых подмножеств A, B, C универсального множества U. Поэтому их и называют законами алгебры множеств.

Математическим анализом называется раздел математики, занимающийся исследованием функций на основе идеи бесконечно малой функции.

Основными понятиями математического анализа являются величина, множество, функция, бесконечно малая функция, предел, производная, интеграл.

Величиной называется все что может быть измерено и выражено числом.

Множеством называется совокупность некоторых элементов, объединенных каким-либо общим признаком. Элементами множества могут быть числа, фигуры, предметы, понятия и т.п.

Множества обозначаются прописными буквами, а элементы множество строчными буквами. Элементы множеств заключаются в фигурные скобки.

Если элемент x принадлежит множеству X , то записывают x Х ( — принадлежит).
Если множество А является частью множества В, то записывают А ⊂ В ( — содержится).

Множество может быть задано одним из двух способов: перечислением и с помощью определяющего свойства.

Например, перечислением заданы следующие множества:
  • А={1,2,3,5,7} — множество чисел
  • Х={x 1 ,x 2 ,...,x n } — множество некоторых элементов x 1 ,x 2 ,...,x n
  • N={1,2,...,n} — множество натуральных чисел
  • Z={0,±1,±2,...,±n} — множество целых чисел

Множество (-∞;+∞) называется числовой прямой , а любое число — точкой этой прямой. Пусть a — произвольная точка числовой прямой иδ — положительное число. Интервал (a-δ; a+δ) называется δ-окрестностью точки а .

Множество Х ограничено сверху (снизу), если существует такое число c, что для любого x ∈ X выполняется неравенство x≤с (x≥c). Число с в этом случае называется верхней(нижней) гранью множества Х. Множество, ограниченное и сверху и снизу, называется ограниченным . Наименьшая (наибольшая) из верхних (нижних) граней множества называется точной верхней (нижней) гранью этого множества.

Основные числовые множества

N {1,2,3,...,n} Множество всех
Z {0, ±1, ±2, ±3,...} Множество целых чисел. Множество целых чисел включает в себя множество натуральных.
Q

Множество рациональных чисел .

Кроме целых чисел имеются ещё и дроби. Дробь — это выражение вида , где p — целое число, q — натуральное. Десятичные дроби также можно записать в виде . Например: 0,25 = 25/100 = 1/4. Целые числа также можно записать в виде . Например, в виде дроби со знаменателем "один": 2 = 2/1.

Таким образом любое рациональное число можно записать десятичной дробью — конечно или бесконечной периодической.

R

Множество всех вещественных чисел .

Иррациональные числа — это бесконечные непериодические дроби. К ним относятся:

Вместе два множества (рациональных и иррациональных чисел) — образуют множество действительных (или вещественных) чисел.

Если множество не содержит ни одного элемента, то оно называется пустым множеством и записывается Ø .

Элементы логической символики

Запись ∀x: |x|<2 → x 2 < 4 означает: для каждого x такого, что |x|<2, выполняется неравенство x 2 < 4.

Квантор

При записи математических выражений часто используются кванторы.

Квантором называется логический символ, который характеризует следующие за ним элементы в количественном отношении.

  • ∀- квантор общности , используется вместо слов "для всех", "для любого".
  • ∃- квантор существования , используется вместо слов "существует", "имеется". Используется также сочетание символов ∃!, которое читается как существует единственный.

Операции над множествами

Два множества А и В равны (А=В), если они состоят из одних и тех же элементов.
Например, если А={1,2,3,4}, B={3,1,4,2} то А=В.

Объединением (суммой) множеств А и В называется множество А ∪ В, элементы которого принадлежат хотя бы одному из этих множеств.
Например, если А={1,2,4}, B={3,4,5,6}, то А ∪ B = {1,2,3,4,5,6}

Пересечением (произведением) множеств А и В называется множество А ∩ В, элементы которого принадлежат как множеству А, так и множеству В.
Например, если А={1,2,4}, B={3,4,5,2}, то А ∩ В = {2,4}

Разностью множеств А и В называется множество АВ, элементы которого принадлежат множесву А, но не принадлежат множеству В.
Например, если А={1,2,3,4}, B={3,4,5}, то АВ = {1,2}

Симметричной разностью множеств А и В называется множество А Δ В, являющееся объединением разностей множеств АВ и ВА, то есть А Δ В = (АВ) ∪ (ВА).
Например, если А={1,2,3,4}, B={3,4,5,6}, то А Δ В = {1,2} ∪ {5,6} = {1,2,5,6}

Свойства операций над множествами

Свойства перестановочности

A ∪ B = B ∪ A
A ∩ B = B ∩ A

Сочетательное свойство

(A ∪ B) ∪ C = A ∪ (B ∪ C)
(A ∩ B) ∩ C = A ∩ (B ∩ C)

Счетные и несчетные множества

Для того, чтобы сравнить два каких-либо множества А и В, между их элементами устанавливают соответствие.

Если это соответствие взаимооднозначное, то множества называются эквивалентными или равномощными, А В или В А.

Пример 1

Множество точек катета ВС и гипотенузы АС треугольника АВС являются равномощными.

Теории

Существует два основных подхода к понятию множества - наивная и аксиоматическая теория множеств.

Аксиоматическая теория множеств

На сегодняшний день множество определяется как модель, удовлетворяющая аксиомам ZFC (аксиомы Цермело - Френкеля с аксиомой выбора). При таком подходе в некоторых математических теориях возникают совокупности объектов, которые не являются множествами. Такие совокупности называются классами (различных порядков).

Элемент множества

Объекты, из которых состоит множество, называют элементами множества или точками множества. Множества чаще всего обозначают большими буквами латинского алфавита , его элементы - маленькими. Если а - элемент множества А, то записывают а ∈ А (а принадлежит А). Если а не является элементом множества А, то записывают а∉А(а не принадлежит А).

Некоторые виды множеств

  • Упорядоченное множество -- множество, на котором задано отношение порядка .
  • Набор (в частности, упорядоченная пара). В отличие от просто множества записывается внутри круглых скобок: (x 1 , x 2 , x 3 , … ), а элементы могут повторяться.

По иерархии:

Множество множеств Подмножество Надмножество

По ограничению:

Операции над множествами

Литература

  • Столл Р. Р. Множества. Логика. Аксиоматические теории. - М .: Просвещение, 1968. - 232 с.

См. также

Wikimedia Foundation . 2010 .

Смотреть что такое "Элемент множества" в других словарях:

    элемент множества - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] элемент множества Объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в… …

    Элемент множества - объект любой природы, который в совокупности с другими аналогичными объектами составляет множество. Часто вместо термина элемент в этом смысле употребляют «точка множества», «член множества» и др.… …

    МНОЖЕСТВА, в математике совокупность определенных объектов. Эти объекты называются элементами множества. Число элементов может быть бесконечным или конечным, или даже равняться нулю (число элементов в пустом множестве обозначается 0). Каждый… … Научно-технический энциклопедический словарь

    элемент - Обобщенный термин, под которым в зависимости от соответствующих условий может пониматься поверхность, линия, точка. Примечания 1. Элемент может быть поверхностью (частью поверхности, плоскостью симметрии нескольких поверхностей), линией (профилем … Справочник технического переводчика

    Часть чего нибудь. Одна из возможных этимологий этого слова по названию ряда согласных латинских букв L, M, N (el em en). Элемент (философия) Элемент обязательная принадлежность флага, знамени и штандарта. Элемент множества Элементарные… … Википедия

    Элемент - первичная (для данного исследования, модели) составная часть сложного целого. См. Элемент множества, Элемент системы … Экономико-математический словарь

    Множество один из ключевых объектов математики, в частности, теории множеств. «Под множеством мы понимаем объединение в одно целое определенных, вполне различимых объектов нашей интуиции или нашей мысли» (Г. Кантор). Это не является в полном… … Википедия

    элемент - 02.01.14 элемент (знак символа или символ) : Отдельный штрих или пробел в символе штрихового кода либо одиночная многоугольная или круглая ячейка в матричном символе, формирующие знак символа в… … Словарь-справочник терминов нормативно-технической документации

    А; м. [от лат. elementum стихия, первоначальное вещество] 1. Составная часть чего л.; компонент. Разложить целое на элементы. Из каких элементов состоит культура? Природа э. производства. Составные элементы чего л. // Характерное движение, одна… … Энциклопедический словарь

Понятие множества относится к аксиоматическим понятиям математики.

Определение . Множество – такой набор, группа, коллекция элементов, которые обладают каким-либо общим для них всех свойством или признаком.

Обозначение: A , B .

Определение . Два множества A и B равны тогда и только тогда, когда они состоят из одних и тех же элементов. A = B .

Запись a ∈ A (a ∉ A) означает, что a является (не является) элементом множества A.

Определение . Множество, не содержащее элементов, называется пустым и обозначается ∅.

Обычно в конкретных случаях элементы всех рассматриваемых множеств берутся из одного, достаточно широкого множества U, которое называется уни- версальным множеством .

Мощность множества обозначается как |M| .
Замечание : для конечных множеств мощность множества – это число элементов.

Определение . Если |A| = |B| , то множества называются равномощными .

Для иллюстрации операций над множествами часто используются диаграммы Эйлера – Венна . Построение диаграммы заключается в изображении большого прямоугольника, представляющего универсальное множество U , а внутри его – кругов, представляющих множества.

Над множествами определены следующие операции:

Объединение А∪В: = {х/х∈А∨х∈В}

Пересечение А∩В: = {х/х∈А&х∈В}

Разность А\В: = {х/х∈А&х∈В}

Дополнение A U \ A: = {x / x U & x ∉ A}

Задача1.1. Дано: а)A,B⊆Z, A = {1;3;4;5;9}, B = {2;4;5;10}. б)A,B⊆R, A = [-3;3), B = (2;10].

Решение.

a) A∩B = {4;5}, A∪B = {1;2;3;4;5;9;10}, A \ B = {1;3;9}, B \ A = {2;10}, B = Z \ B ;

б) A∩B = (2;3), A∪B = [-3;10] , A\B = [-3,2], B\A = ,B Z\B = (-∞,2]∪(10,+∞).


1) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = [-3; 7), B = [-4; 4].

Найти: A∩B, A∪B, A\B, B\A, B .


2) Дано: а) A, B ⊆ Z, A = {3;6;7;10}, B = {2;3;10;12}.

б) A, B ⊆ R, A = .

Найти: A∩B, A∪B, A\B, B\A, B .


3) Дано: а) A, B ⊆ Z, A = {1;2;5;7;9;11}, B = {1;4;6;7}.

б) A, B ⊆ R, A = .


4) Дано: а) A, B ⊆ Z, A = {0;4;6;7}, B = {-3;3;7}.

б)A,B ⊆ R, A = [-15;0), B = [-2;1].

Найти: A∩B, A∪B, A\B, B\A, A .


5) Дано: а) A, B ⊆ Z, A = {0;9}, B = {-6;0;3;9}.

б) A, B ⊆ R, A = [-10; 5), B = [-1; 6].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


6) Дано: а)A, B ⊆ Z, A = {0;6;9}, B = {-6;0;3;7}.

б) A, B ⊆ R, A = [-8;3), B = .

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


7) Дано: а)A, B ⊆ Z, A = {-1;0;2;10}, B = {-1;2;9;10}.

б)A, B ⊆ R, A = [-10;9), B = [-5;15].

Найти: A∩B, A∪B, A\B, B\A, B .


8) Дано: а) A,B ⊆ Z, A = {1;2;9;37}, B = {-1;1;9;11;15}.

б) A, B ⊆ R, A = [-8;1), B = [-5;7].

Найти: A ∩ B, A ∪ B, A\B, B\A, B .


9) Дано: а) A, B ⊆ Z, A = {-1;0;9;17}, B = {-1;1;9;10;25}.

б) A, B ⊆ R, A = [-4;9), B = [-5;7].

Найти: A∩B, A∪B, A\B, B\A, B .


10) Дано: а)A,B⊆Z, A = {1;7;9;17}, B = {-2;1;9;10;25}.

б) A,B⊆R, A = .

Найти: A ∩ B, A ∪ B, A\B, B\A, A .

Задача1.1. Используя диаграммы Эйлера-Венна доказать тождество:

A\ (B\C) = (A\B) ∪ (A ∩ C).

Решение.

Построим диаграммы Венна.

Левая часть равенства представлена на рисунке а), правая – на рисунке б). Из диаграмм очевидно равенство левой и правой частей данного соотношения.


Задачи для самостоятельного решения

Используя диаграммы Эйлера-Венна доказать тождества:

1) A\(B ∪ C) = (A\B) ∩ (A\C);

2) A ∪ (B\C) = (A ∩ B)\C;

3) A ∪ (B \ C) = (A ∩ B) \ (A ∩ C);

4) (A\B) \C = (A\B) \ (B\C);

5) (A\B) \C = (A\B) ∪ (A∩C);

6) A∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C);

7) (A ∩ B) \ (A ∩ C) = (A ∩ B) \C;

8) A∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C);

9) (A ∪ B) \C = (A\C) ∪ (B\C)

10) A∪ (A ∩ B) = A ∪ B

Задача 1.3. На уроке литературы учитель решил узнать, кто из 40 учеников класса читал книги A, B, C. Результаты опроса оказались таковы: книгу A читали 25 учеников; книгу B читали 22 ученика; книгу C читали 22 ученика; книги A или B читали 33 ученика; книги A или C читали 32 ученика; книги B или C читали 31 ученик; все книги читали 10 учеников. Определите: 1) Сколько учеников прочли только книгу A?

2) Сколько учеников прочли только книгу B?

3) Сколько учеников прочли только книгу C?

4) Сколько учеников прочли только по одной книге?

5) Сколько учеников прочли хотя бы одну книгу?

6) Сколько учеников не прочитали ни одной книги?

Решение.

Пусть U - множество учеников в классе. Тогда

|U| = 40, |A| = 25, |B| = 22, |C| = 22, |A ∪ B| = 33, |A ∪ C| = 32, |B ∪ C| = 31, |A ∩ B ∩ C| = 10

Попробуем проиллюстрировать задачу.

Разобьём множество учеников, прочитавших хотя бы одну книгу, на семь подмножеств k 1 , k 2 , k 3 , k 4 , k 5 , k 6 , k 7 , где

k 1 - множество учеников, прочитавших только книгу A;

k 3 - множество учеников, прочитавших только книгу B;

k 7 - множество учеников, прочитавших только книгу C;

k 2 - множество учеников, прочитавших книги A и B и не читавших книгу C;

k 4 - множество учеников, прочитавших книги A и C и не читавших книгу B;

k 6 - множество учеников, прочитавших книги B и C и не читавших книгу A;

k 5 - множество учеников, прочитавших книги A, B и C.

Вычислим мощность каждого из этих подмножеств.

|k 2 | = |A ∩ B|-|A ∩ B ∩ C|; |k 4 | = |A ∩ C|-|A ∩ B ∩ C|;

|k 6 | = |B ∩ C| - |A ∩ B ∩ C|; |k 5 | = |A ∩ B ∩ C|.

Тогда |k 1 | = |A| - |k 2 | - |k 4 | - |k 5 |, |k 3 | = |B| - |k 2 | - |k 6 | - |k 5 |, |k 7 | = |C| - |k 6 | - |k | - |k 5 |.

Найдём |A ∩ B|, |A ∩ C|, |B ∩ C|.

|A ∩ B| = | A| +| B| - |A ∩ B| = 25 + 22 - 33 = 14 ,

|A ∩ C| = |A| + |C| - |A ∩ C| = 25 + 22 - 32 = 15 ,

|B ∩ C| = |B| + |C| - |B ∩ C| = 22 + 22 - 31 = 13 .

Тогда k 1 = 25-4-5-10 = 6; k 3 = 22-4-3-10 = 5; k 7 = 22-5-3-10 = 4;

|A ∪ B ∪ C| = |A ∪ B| + |C| - |(A ∪ B) ∪ C| .

Из рисунка ясно, что |C| - |(A ∪ B) ∪ C| = |k 7 | = 4, тогда |A ∪ B ∪ C| = 33+4 = 37 – число учеников, прочитавших хотя бы одну книгу.

Так как в классе 40 учеников, то 3 ученика не прочитали ни одной книги.

Ответ:
  1. 6 учеников прочли только книгу A.
  2. 5 учеников прочли только книгу B.
  3. 4 ученика прочли только книгу C.
  4. 15 учеников прочли только по одной книге.
  5. 37 учеников прочли хотя бы одну книгу из A, B, C.
  6. 3 ученика не прочитали ни одной книги.

Задачи для самостоятельного решения

1) В течение недели в кинотеатре шли фильмы A, B, C . Каждый из 40 школьни- ков видел либо все 3 фильма, либо один из трёх. Фильм A видели 13 школьников. Фильм B видели 16 школьников. Фильм C видели 19 школьников. Сколько школьников видели только по одному фильму?

2) В международной конференции участвовало 120 человек. Из них 60 владеют русским языком, 48 – английским, 32 – немецким, 21 – русским и английским, 19 – английским и немецким, 15 – русским и немецким, а 10 человек владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

3) В спортивных соревнованиях участвует школьная команда из 20 человек, каждый из которых имеет спортивный разряд по одному или нескольким из трёх видов спорта: лёгкой атлетике, плаванию и гимнастике. Известно, что 12 из них имеют разряды по лёгкой атлетике, 10 – по гимнастике и 5 – по плаванию. Определите количество школьников из этой команды, имеющих разряды по всем видам спорта, если по лёгкой атлетике и плаванию разряды имеют 2 человека, по лёгкой атлетике и гимнастике – 4 человека, по плаванию и гимнастике – 2 человека.

4) Опрос 100 студентов дал следующие результаты о количестве студентов, изучающих различные иностранные языки: испанский – 28; немецкий – 30; французский – 42; испанский и немецкий – 8; испанскии и французский – 10; немецкий и французский – 5; все три языка – 3. Сколько студентов изучает немецкий язык в том и только том случае, если они изучают французский язык? 5) Опрос 100 студентов выявил следующие данные о числе студентов, изучающих различные иностранные языки: только немецкий – 18; немецкий, но не испанский – 23; немецкий и французский – 8; немецкий – 26; французский – 48; французский и испанский – 8; никакого языка – 24. Сколько студентов изучают немецкий и испанский язык?

6) В отчёте об опросе 100 студентов сообщалось, что количество студентов, изучающих различные языки, таково: все три языка – 5; немецкий и испанский – 10; французский и испанский – 8; немецкий и французский – 20; испанский – 30; немецкий – 23; французский – 50. Инспектор, представивший этот отчёт, был уволен. Почему?

7) В международной конференции участвовало 100 человек. Из них 42 владеют французским языком, 28 – английским, 30 – немецким, 10 – французским и английским, 8 – английским и немецким, 5 – французским и немецким, а 3 чело- века владеют всеми тремя языками. Сколько участников конференции не владеют ни одним из этих языков?

8) Студенты 1 курса, изучающие информатику в университете, могут посещать и дополнительные дисциплины. В этом году 25 из них предпочли изучать бухгалтерию, 27 выбрали бизнес, а 12 решили заниматься туризмом. Кроме того, было 20 студентов, слушающих курс бухгалтерии и бизнеса, 5 изучали бухгалтерию и туризм, а 3 – туризм и бизнес. Известно, что никто из студентов не отважился посещать сразу 3 дополнительных курса. Сколько студентов посещали, по крайней мере, 1 дополнительный курс?
9) В олимпиаде по математике для абитуриентов приняло участие 40 учащихся. Им было предложено решить одну задачу по алгебре, одну по геометрии и одну по тригонометрии. Задачу по алгебре решили 20 человек, по геометрии – 18, по тригонометрии – 18 человек. Задачи по алгебре и геометрии решили 7 человек, по алгебре и тригонометрии – 8 человек, по геометрии и тригонометрии – 9 человек. Ни одной задачи не решили 3 человека. Сколько учащихся решили толь- ко две задачи?

10) В классе 40 учеников. Из них по русскому языку имеют тройки 19 человек, по математике – 17 человек и по физике – 22 человека. 4 ученика имеют тройки только по одному русскому языку, 4 – только по математике и 11 – только по физике. По русскому, математике и физике имеют тройки 5 учащихся. 7 человек имеют тройки по математике и физике. Сколько учеников имеют тройки по двум из трёх предметов?

Множество - это совокупность объектов, рассматриваемая как одно целое. Понятие множества принимается за основное, т. е. не сводимое к другим понятиям. Объекты, составляющие данное множество, называются его элементами. Основное отношение между элементом a и содержащим его множеством A обозначается так (a есть элемент множества A ; или a принадлежит A , или A содержит a ). Если a не является элементом множества A , то пишут (a не входит в A , A не содержит a ). Множество можно задать указанием всех его элементов, причем в этом случае употребляются фигурные скобки. Так {a , b , c } обозначает множество трех элементов. Аналогичная запись употребляется и в случае бесконечных множеств, причем невыписанные элементы заменяются многоточием. Так, множество натуральных чисел обозначается {1, 2, 3, ...}, а множество четных чисел {2, 4, 6, ...}, причем под многоточием в первом случае подразумеваются все натуральные числа, а во втором - только четные.

Два множества A и B называются равными , если они состоят из одних и тех же элементов, т. е. A принадлежит B и, обратно, каждый элемент B принадлежит A . Тогда пишут A = B . Таким образом, множество однозначно определяется его элементами и не зависит от порядка записи этих элементов. Например, множество из трех элементов a , b , c допускает шесть видов записи:

{a , b , c } = {a , c , b } = {b , a , c } = {b , c , a } = {c , a , b } = {c , b , a }.

Из соображений формального удобства вводят еще так называемое "пустое множество", а именно, множество, не содержащее ни одного элемента. Его обозначают , иногда символом 0 (совпадение с обозначением числа нуль не ведет к путанице, так как смысл символа каждый раз ясен).

Если каждый элемент множества A входит во множество B , то A называется подмножеством B , а B называется надмножеством A . Пишут (A входит в B или A содержится в B , B содержит A ). Очевидно, что если и , то A = B . Пустое множество по определению считается подмножеством любого множества.

Если каждый элемент множества A входит в B , но множество B содержит хотя бы один элемент, не входящий в A , т. е. если и , то A называется собственным подмножеством B , а B - собственным надмножеством A . В этом случае пишут . Например, запись и означают одно и то же, а именно, что множество A не пусто.

Заметим еще, что надо различать элемент a и множество {a }, содержащее a в качестве единственного элемента. Такое различие диктуется не только тем, что элемент и множество играют неодинаковую роль (отношение не симметрично), но и необходимостью избежать противоречия. Так, пусть A = {a , b } содержит два элемента. Рассмотрим множество {A }, содержащее своим единственным элементом множество A . Тогда A содержит два элемента, в то время как {A } - лишь один элемент, и потому отождествление этих двух множеств невозможно. Поэтому рекомендуется применять запись , и не пользоваться записью .