Атомный номер плутоний. Оружейный плутоний: применение, производство, утилизация. Конструктивные особенности производственных реакторов

Плутоний был открыт в конце 1940 г. в Калифорнийском университете. Его синтезировали Мак-Миллан, Кеннеди и Валь, бомбардируя окись урана (U 3 O 8) сильно ускоренными в циклотроне ядрами дейтерия (дейтронами). Позднее было установлено, что при этой ядерной реакции сначала получается короткоживущий изотоп нептуний-238, а из него уже плутоний-238 с периодом полураспада около 50 лет. Годом позже Кеннеди, Сиборг, Сегрэ и Валь синтезировали более важный изотоп - плутоний-239 посредством облучения урана сильно ускоренными в циклотроне нейтронами. Плутоний-239 образуется при распаде нептуния-239; он испускает alfa-лучи и имеет период полураспада 24 000 лет. Чистое соединение плутония впервые получено в 1942 r. Затем стало известно, что существует природный плутоний, обнаруженный в урановых рудах, в частности в рудах, залегах в Конго.

Название элемента было предложено в 1948 г.: Мак-Миллан назвал первый трансурановый элемент нептунием в связи с тем, что планета Нептун - первая за Ураном. По аналогии элемент 94 решили назвать плутонием, так как планета Плутон является второй за Ураном. Плутон, открытый в 1930 г., получил свое название от имени бога Плутона - властителя подземного царства по греческой мифологии. В начале XIX в. Кларк предлагал наименовать плутонием элемент барий, производя это название непосредственно от имени бога Плутона, но его предложение не было принято.

Плутоний (латинское Plutonium, обозначается символом Pu) — радиоактивный химический элемент с атомным номером 94 и атомным весом 244,064. Плутоний является элементом III группы периодической системы Дмитрия Ивановича Менделеева, относится к семейству актиноидов. Плутоний - тяжелый (плотность при нормальных условиях 19,84 г/см³) хрупкий радиоактивный металл серебристо-белого цвета.

Плутоний не имеет стабильных изотопов. Из ста возможных изотопов плутония синтезированы двадцать пять. У пятнадцати из них изучены ядерные свойства (массовые числа 232-246). Четыре нашли практическое применение. Наиболее долгоживущие изотопы - 244Pu (период полураспада 8,26.107 лет), 242Pu (период полураспада 3,76 105 лет), 239Pu (период полураспада 2,41 104 лет), 238Pu (период полураспада 87,74 года) - α-излучатели и 241Pu (период полураспада 14 лет) - β-излучатель. В природе плутоний встречается в ничтожных количествах в урановых рудах (239Pu); он образуется из урана под действием нейтронов, источниками которых являются реакции, протекающие при взаимодействии α-частиц с легкими элементами (входящими в состав руд), спонтанное деление ядер урана и космическое излучение.

Девяносто четвертый элемент открыт группой американских ученых - Гленом Сиборгом (Glenn Seaborg), Кеннеди (Kennedy), Эдвином Макмилланом (Edwin McMillan) и Артуром Уолхом (Arthur Wahl) в 1940 году в Беркли (в Калифорнийском университете) при бомбардировке мишени из окиси урана (U3O8) сильно ускоренными ядрами дейтерия (дейтронами) из шестидесятидюймового циклотрона. В мае 1940 свойства плутония были предсказаны Льюисом Тернером (Louis Turner).

В декабре 1940 года был открыт изотоп плутония Pu-238, с периодом полураспада ~90 лет, через год - более важный Pu-239 с периодом полураспада ~24 000 лет.

Эдвин Макмиллан в 1948 году предложил назвать химический элемент плутонием в честь открытия новой планеты Плутон и по аналогии с нептунием, который был назван в честь открытия Нептуна.

Металлический плутоний (изотоп 239Pu) используется в ядерном оружии и служит в качестве ядерного топлива энергетических реакторов, работающих на тепловых и особенно на быстрых нейтронах. Критическая масса для 239Pu в виде металла составляет 5,6 кг. Кроме всего прочего изотоп 239Pu является исходным веществом для получения в ядерных реакторах трансплутониевых элементов. Изотоп 238Pu применяют в малогабаритных ядерных источниках электрического тока, используемых в космических исследованиях, а также в стимуляторах сердечной деятельности человека.

Плутоний-242 важен как «сырье» для сравнительно быстрого накопления высших трансурановых элементов в ядерных реакторах. δ-стабилизированные сплавы плутония применяются при изготовлении топливных элементов, так как они обладают лучшими металлургическими свойствами по сравнению с чистым плутонием, который при нагревании претерпевает фазовые переходы. Оксиды плутония используются в качестве энергетического источника для космической техники и находят свое применение в ТВЭЛах.

Все соединения плутония являются ядовитыми, что является следствием α-излучения. Альфа-частицы представляют серьезную опасность в том случае, если их источник находится в теле зараженного, они повреждают окружающие элемент ткани организма. Гамма-излучение плутония не опасно для организма. Стоит учесть, что разные изотопы плутония обладают разной токсичностью, например типичный реакторный плутоний в 8-10 раз токсичнее чистого 239Pu, так как в нем преобладают нуклиды 240Pu, который является мощным источником альфа-излучения. Плутоний самый радиотоксичный элемент из всех актиноидов, однако, считается далеко не самым опасным элементом, так радий почти в тысячу раз опаснее самого ядовитого изотопа плутония - 239Pu.

Биологические свойства

Плутоний концентрируется морскими организмами: коэффициент накопления этого радиоактивного металла (отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона - приблизительно 2300, для морских звёзд - около 1000, для моллюсков - до 380, для мышц, костей, печени и желудка рыб - 5, 570, 200 и 1060 соответственно. Наземные растения усваивают плутоний в основном через корневую систему и накапливают его до 0,01 % от своей массы. В организме человека девяносто четвертый элемент задерживается преимущественно в скелете и печени, откуда почти не выводится (особенно из костей).

Плутоний высокотоксичен, причем его химическая опасность (как любого другого тяжелого металла) выражается значительно слабее (с химической точки зрения он также ядовит как свинец.) в сравнении с его радиоактивной токсичностью, которая является следствием альфа-излучения. Причем α-частицы обладают относительно малой проникающей способностью: для 239Pu пробег α-частиц в воздухе составляет 3,7 см, а в мягкой биологической ткани 43 мк. Поэтому α-частицы представляют серьезную опасность в том случае, если их источник находится в теле зараженного. При этом они повреждают окружающие элемент ткани организма.

В тоже время γ-лучи и нейтроны, которые плутоний также испускает и которые способны проникать в тело снаружи, не очень опасны, ведь их уровень слишком мал для того, чтобы причинить вред здоровью. Плутоний относится к группе элементов с особо высокой радиотоксичностью. В тоже время разные изотопы плутония обладают разной токсичностью, например типичный реакторный плутоний в 8-10 раз токсичнее чистого 239Pu, так как в нем преобладают нуклиды 240Pu, который является мощным источником альфа-излучения.

При поступлении элемента вместе с водой и пищей плутоний менее ядовит, чем такие вещества как кофеин, некоторые витамины, псевдоэфедрин и множество растений и грибов. Это объясняется тем, что данный элемент плохо всасывается ЖКТ, даже при поступлении в виде растворимой соли, эта самая соль связывается содержимым желудка и кишечника. Однако поглощение 0,5 грамма плутония в мелкораздробленном или растворенном состоянии может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель (для цианида это значение составляет 0,1 грамма).

С точки зрения ингаляции плутоний - это рядовой токсин (примерно соответствует парам ртути). При ингаляции плутоний обладает канцерогенными свойствами и способен вызвать рак лёгких. Так при вдыхании ста миллиграмм плутония в виде частиц оптимального для удержания в легких размера (1-3 микрона) ведет к смерти от отека легких за 1-10 дней. Доза в двадцать миллиграмм приводит к смерти от фиброза примерно за месяц. Меньшие дозы приводят к хроническому канцерогенному отравлению. Опасность ингаляционного проникновения плутония в организм увеличивается вследствие того, что плутоний склонен к образованию аэрозолей.

Несмотря на то, что это металл, он весьма летуч. Непродолжительное нахождение металла в помещении значительно увеличивает его концентрацию в воздухе. Попавший в лёгкие плутоний частично оседает на поверхности лёгких, частично переходит в кровь, а затем в лимфу и вещество костного мозга. Большая часть (примерно 60 %) попадает в костную ткань, 30 % в печень и всего 10 % выводится естественным путем. Количество попавшего в организм плутония зависит от величины аэрозольных частиц и растворимости в крови.

Попадающий тем или иным путем в человеческий организм плутоний схож по свойствам с трехвалентным железом, поэтому, проникая в систему кровообращения, плутоний начинает концентрироваться в тканях, содержащих железо: костный мозг, печень, селезёнка. Организм воспринимает плутоний, как железо, следовательно, белок трансферина забирает плутоний вместо железа, в результате чего останавливается перенос кислорода в организме. Микрофаги растаскивают плутоний по лимфоузлам. Попавший в организм плутоний выводится из него очень долго - на протяжении 50 лет из организма выведется всего 80 %. Период полувыведения из печени составляет 40 лет. Для костной ткани период полувыведения плутония составляет 80-100 лет, фактически, концентрация девяносто четвертого элемента в костях постоянна.

На протяжении Второй мировой войны и после её окончания учёные, работавшие в Манхэттенском проекте, а также ученые Третьего рейха и другие научно-исследовательские организации, проводили эксперименты с использованием плутония на животных и людях. Результаты исследований на животных показали, что несколько миллиграммов плутония на килограмм ткани - смертельная доза. Применение плутония на людях заключалось в том, что хронически больным пациентам внутримышечно вводили обычно 5 мкг плутония. В итоге было установлено, что смертельная доза для пациента равна одному микрограмму плутония, и что плутоний более опасен, чем радий, и склонен к накапливанию в костях.

Как известно, плутоний - элемент практически отсутствующий в природе. Однако порядка пяти тонн его выделилось в атмосферу в результате ядерных испытаний в период 1945-1963 гг. Суммарное же количество плутония, выброшенного в атмосферу из-за ядерных испытаний до 1980-х годов, оценивается в 10 тонн. По некоторым оценкам, почва в Соединенных Штатах Америки содержит в среднем 2 милликюри (28 мг) плутония на км2 от выпадения радиоактивных осадков, а нахождение плутония в Тихом океане повышено по сравнению с общим распространением ядерных материалов на земле.

Последнее явление связано с проведением ядерных испытаний США на территории Маршалловых Островов в Тихоокеанском полигоне в середине 1950-х годов. Время нахождения плутония в поверхностных водах океана составляет от 6 до 21 года, однако, даже по прошествии этого срока, плутоний выпадает на дно вместе с биогенными частицами, из которых он восстанавливается в растворимые формы в результате микробного разложения.

Мировое загрязнение девяносто четвертым элементом связано не только с ядерными испытаниями, но и с авариями на производствах и технике, взаимодействующей с этим элементом. Так в январе 1968 года самолет B-52 ВВС США, несший на борту четыре ядерных заряда, потерпел крушение на территории Гренландии. В результате взрыва произошло разрушение зарядов и утечка плутония в океан.

Другой случай радиоактивного загрязнения окружающей среды в результате аварии произошел с советским космическим аппаратом «Космос-954» 24 января 1978 года. В результате неконтролируемого схода с орбиты спутник с ядерным источником энергии на борту упал на территорию Канады. В результате аварии в окружающую среду попало более килограмма плутония-238, распространившегося на территорию площадью около 124 000 м².

Самый страшный пример аварийной утечки радиоактивных веществ в окружающую среду - авария на Чернобыльской АЭС, которая произошла 26 апреля 1986 года. В результате разрушения четвертого энергоблока в окружающую среду было выброшено 190 тонн радиоактивных веществ (в том числе и изотопы плутония) на площадь около 2200 км².

Попадание плутония в окружающую среду связано не только с техногенными происшествиями. Известны случаи утечки плутония, как из лабораторных, так и из заводских условий. Известно более двадцати аварийных случаев утечки из лабораторий 235U и 239Pu. На протяжении 1953-1978 гг. аварийные случаи привели к потере от 0,81 (Маяк, 15 марта 1953 г.) до 10,1 кг (Томск, 13 декабря 1978 г.) 239Pu. Происшествия на промышленных предприятиях суммарно привели к смерти двух человек в городе Лос-Аламос (21 августа 1945 г. и 21 мая 1946 г.) из-за двух случаев аварий и потерь 6,2 кг плутония. В городе Саров в 1953 и 1963 гг. примерно 8 и 17,35 кг попало за пределы ядерного реактора. Один из них привел к разрушению ядерного реактора в 1953 году.

При делении ядра 238Pu нейтронами происходит выделение энергии в размере 200 МэВ, что в 50 миллионов раз больше, чем при протекании самой известной экзотермической реакции: C + O2 → CO2. «Сгорая» в ядерном реакторе один грамм плутония дает 2 107 ккал - это энергия, заключенная в 4 т угля. Наперсток же плутониевого топлива в энергетическом эквиваленте может быть приравнен к сорока вагонам хороших дров!

Считается, что «природный изотоп» плутония (244Pu) самый долгоживущий изотоп из всех трансурановых элементов. Его период полураспада составляет 8,26∙107 лет. Ученые длительное время пытались получить изотоп трансуранового элемента, который существовал бы дольше 244Pu - большие надежды в этом отношении возлагались на 247Cm. Однако после его синтеза выяснилось, что период полураспада этого элемента всего 14 млн лет.

История

В 1934 году группа ученых во главе с Энрико Ферми сделала заявление, что в ходе научных работ в Университете Рима они обнаружили химический элемент с порядковым номером 94. Элемент по настоянию Ферми был назван геспериумом, ученый был убежден, что открыл новый элемент, который сейчас называют плутонием, таким образом, сделав предположение о существовании трансурановых элементов и став их теоретическим первооткрывателем. Эту гипотезу Ферми отстаивал и в своей Нобелевской лекции в 1938 году. Только после открытия деления ядер немецкими учеными Отто Фришем и Фрицем Штрассманом, Ферми был вынужден сделать в печатной версии, вышедшей в Стокгольме в 1939 году примечание, указывающее на необходимость пересмотра «всей проблемы трансурановых элементов». Дело в том, что работа Фриша и Штрассмана показала, что активность, обнаруженная Ферми в его экспериментах, была обусловлена именно делением, а не открытием трансурановых элементов, как он ранее полагал.

Новый - девяносто четвертый элемент был открыт в конце 1940 года. Произошло это в Беркли в Калифорнийском университете. При бомбардировке окиси урана (U3O8) ядрами тяжелого водорода (дейтронами) группа американских радиохимиков во главе с Гленном Т. Сиборгом обнаружила неизвестный прежде излучатель альфа-частиц с периодом полураспада 90 лет. Этим излучателем оказался изотоп элемента № 94 с массовым числом 238. Таким образом, 14 декабря 1940 года были получены первые микрограммовые количества плутония вместе с примесью других элементов и их соединений.

В ходе эксперимента, проведённого в 1940 году, было установлено, что при проводимой ядерной реакции сначала получается короткоживущий изотоп нептуний-238 (период полураспада 2,117 суток), а из него уже плутоний-238:

23392U (d,2n) → 23893Np → (β−) 23894Pu

Долгие и трудоемкие химические опыты по отделению нового элемента от примесей продолжались два месяца. Существование нового химического элемента было подтверждено в ночь с 23 на 24 февраля 1941 года Г. Т. Сиборгом, Э. М. Макмилланом, Дж. В. Кеннеди и А. К. Валлем благодаря изучению его первых химических свойств - возможностью обладать, по крайней мере, двумя степенями окисления. Немногим позже окончания опытов было установлено, что этот изотоп является неделящимся, а, следовательно, неинтересным для дальнейшего изучения. Вскоре (март 1941 года) Кеннеди, Сиборг, Сегрэ и Валь синтезировали более важный изотоп - плутоний-239 посредством облучения урана сильно ускоренными в циклотроне нейтронами. Этот изотоп образуется при распаде нептуния-239, испускает alfa-лучи и имеет период полураспада 24 000 лет. Первое чистое соединение элемента было получено в 1942 году, а первые весовые количества металлического плутония были получены в 1943 году.

Название нового 94 элемента было предложено в 1948 году Макмилланом, который несколькими месяцами ранее обнаружения плутония совместно с Ф. Эйбельсоном получил первый элемент, более тяжелый, чем уран, - элемент № 93, который назвали нептунием в честь планеты Нептун - первой за Ураном. По аналогии элемент № 94 решили назвать плутонием, так как планета Плутон является второй за Ураном. В свою очередь Сиборг предложил назвать новый элемент «плутием», однако потом понял, что название не очень звучит по сравнению с «плутонием». Кроме того, он выдвигал и другие названия для нового элемента: ультимиум, экстермиум, из-за ошибочного в то время суждения, что плутоний станет последним химическим элементом в периодической таблице. В итоге, элемент назвали «плутоний» в честь открытия последней планеты солнечной системы.

Нахождение в природе

Период полураспада самого долгоживущего изотопа плутония - 75 млн лет. Цифра весьма внушительная, однако, возраст Галактики измеряется миллиардами лет. Из этого следует, что у первичных изотопов девяносто четвертого элемента, образовавшихся при великом синтезе элементов Вселенной, не было шансов дожить до наших дней. И все же, это не означает, что плутония совсем нет в Земле. Он постоянно образуется в урановых рудах. Захватывая нейтроны космического излучения и нейтроны, образующиеся при спонтанном (самопроизвольном) делении ядер 238U, некоторые - очень немногие - атомы этого изотопа превращаются в атомы 239U. Ядра этого элемента очень нестабильны, они испускают электроны и тем самым повышают свой заряд, происходит образование нептуния - первого трансуранового элемента. 239Np также неустойчив, его ядра тоже испускают электроны, поэтому всего за 56 часов половина 239Np превращается в 239Pu.

Период полураспада этого изотопа уже весьма велик и составляет 24 000 лет. В среднем, содержание 239Pu примерно в 400 000 раз меньше, чем у радия. Поэтому не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Малые количества 239Pu - триллионная доля - и продукты распада могут быть найдены в урановых рудах, например, в природном ядерном реакторе в Окло, Габон (Западная Африка). Так называемый «природный ядерный реактор» считается единственным в мире, в котором в настоящее время происходит образование актиноидов и их продуктов деления в геосфере. По современным оценкам в этом регионе несколько миллионов лет назад происходила самоподдерживающаяся реакция с выделением тепла, продолжавшаяся более полумиллиона лет.

Итак, мы уже знаем, что в урановых рудах в результате захвата нейтронов ядрами урана образуется нептуний (239Np), продуктом β-распада которого и является природный плутоний-239. Благодаря специальным приборам - масс-спектрометрам было обнаружено наличие плутония-244 (244Pu), который имеет самый большой период полураспада - примерно 80 миллионов лет, в докембрийском бастнезите (в цериевой руде). В природе 244Pu находится преимущественно в виде диоксида (PuO2), который в воде еще менее растворим, чем песок (кварц). Поскольку относительно долгоживущий изотоп плутоний-240 (240Pu) находится в цепочке распада плутония-244, то его распад имеет место быть, однако это происходит очень редко (1 случай на 10 000). Очень небольшие количества плутония-238 (238Pu) относятся к весьма редкому двойному бета-распаду материнского изотопа - урана-238, который был найден в урановых рудах.

Следы изотопов 247Pu и 255Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.

Минимальные количества плутония гипотетически могут находиться в человеческом организме, учитывая то, что было проведено огромное количество ядерных испытаний так или иначе связанных с плутонием. Плутоний накапливается преимущественно в скелете и печени, откуда практически не выводится. Кроме того, девяносто четвертый элемент накапливается морскими организмами; наземные растения усваивают плутоний главным образом через корневую систему.

Выходит, что искусственно синтезированный плутоний все-таки существует в природе, так почему же его не добывают, а получают искусственным путем? Дело в том, что слишком мала концентрация данного элемента. О другом радиоактивном металле - радии говорят: «в грамм добыча - в год труды», а радия в природе в 400 000 раз больше, чем плутония! По этой причине не только добыть - даже обнаружить «земной» плутоний необыкновенно трудно. Сделать это удалось лишь после того, как были изучены физические и химические свойства плутония, полученного в атомных реакторах.

Применение

Изотоп 239Pu (наряду с U) используют в качестве ядерного топлива энергетических реакторов, работающих на тепловых и на быстрых нейтронах (восновном), а также при изготовлении ядерного оружия.

Около полутысячи атомных электростанций по всему миру генерируют примерно 370 ГВт электроэнергии (или 15 % от общего объема производства электроэнергии в мире). Плутоний-236 применяется при изготовлении атомных электрических батареек, срок службы которых достигает пяти лет и более, их применяют в генераторах тока, стимулирующих работу сердца (кардиостимуляторы). 238Pu применяют в малогабаритных ядерных источниках электрического тока, используемых в космических исследованиях. Так плутоний-238 является источником питания для зондов New Horizons, Galileo и Cassini, марсохода Curiosity и других космических аппаратов.

В ядерном оружии применяется плутоний-239, так как данный изотоп является единственным подходящим нуклидом для применения в ядерной бомбе. Кроме того, более частое использование плутония-239 в ядерных бомбах обусловлено тем, что плутоний занимает меньший объем в сфере (где расположено ядро бомбы), следовательно, можно выиграть во взрывной силе бомбы за счет этого свойства.

Схема, по которой происходит ядерный взрыв с участием плутония, заключается в конструкции самой бомбы, ядро которой состоит из сферы, заполненной 239Pu. В момент столкновения с землей сфера сжимается до миллиона атмосфер за счет конструкции и благодаря окружающему эту сферу взрывчатому веществу. После удара происходит расширение ядра в объеме и плотности за кратчайшее время - десяток микросекунд, сборка проскакивает критическое состояние на тепловых нейтронах и переходит в сверхкритическое состояние на быстрых нейтронах - начинается цепная ядерная реакция с участием нейтронов и ядер элемента. При конечном взрыве ядерной бомбы выделяется температура порядка десятков миллионов градусов.

Изотопы плутония нашли свое применение при синтезе трансплутониевых (следующих после плутония) элементов. Так, например, в Оук-Риджской национальной лаборатории при длительном нейтронном облучение 239Pu получают 24496Cm, 24296Cm, 24997Bk, 25298Cf, 25399Es и 257100Fm. Таким же образом в 1944 году был впервые получен и америций 24195Am. В 2010 году оксид плутония-242 бомбардируемый ионами кальция-48 послужил источником получения унунквадия.

δ-Стабилизированные сплавы плутония используются в изготовлении ТВЭЛов, ведь они обладают значительно лучшими металлургическими свойствами в сравнении с чистым плутонием, который при нагревании претерпевает фазовые переходы и является весьма хрупким и ненадежным материалом. Сплавы плутония с другими элементами (интерметаллические соединения) обычно получают прямым взаимодействием элементов в нужных соотношениях, при этом в основном используется дуговая плавка, иногда нестабильные сплавы получают распылительным осаждением или охлаждением расплавов.

Основные промышленные легирующие элементы для плутония - это галлий, алюминий и железо, хотя плутоний способен образовывать сплавы и промежуточные соединения с большинством металлов за редким исключением (калий, натрий, литий, рубидий, магний, кальций, стронций, барий, европий и иттербий). Тугоплавкие металлы: молибден, ниобий, хром, тантал и вольфрам растворимы в жидком плутонии, но почти нерастворимы или мало растворимы в твёрдом плутонии. Индий, кремний, цинк и цирконий способны к формированию метастабильного δ-плутония (δ"-фаза) при быстром охлаждении. Галлий, алюминий, америций, скандий и церий могут стабилизировать δ-плутоний при комнатной температуре.

Большие количества гольмия, гафния и таллия позволяют сохранить некоторое количество δ-плутония при комнатной температуре. Нептуний является единственным элементом, который может стабилизировать α-плутоний при высоких температурах. Титан, гафний и цирконий стабилизируют структуру β-плутония при комнатной температуре при резком охлаждении. Применение таких сплавов довольно разнообразно. Например, сплав плутоний-галий используется для стабилизации δ-фазы плутония, который позволяет избежать переход α-δ фаза. Тройной сплав плутоний-галлий-кобальт (PuGaCo5) - сверхпроводниковый сплав при температуре 18,5 К. Существует ряд сплавов (плутоний-цирконий, плутоний-церий и плутоний-церий-кобальт), которые используются в качестве ядерного топлива.

Производство

Промышленный плутоний получают двумя способами. Это либо облучение ядер 238U, содержащегося в ядерных реакторах, либо разделение радиохимическими способами (соосаждением, экстракцией, ионным обменом и др.) плутония от урана, трансурановых элементов и продуктов деления, содержащихся в отработанном топливе.

В первом случае наиболее значимый в практическом отношении изотоп 239Pu (в смеси с небольшой примесью 240Pu) получают в ядерных реакторах при участии ядер урана и нейтронов с помощью β--распада и с участием изотопов нептуния как промежуточного продукта деления:

23892U + 21D → 23893Np + 210n;

23893Np → 23894Pu

β--распад

В данном процессе дейтрон попадает в уран-238, в результате чего образуется нептуний-238 и два нейтрона. Далее нептуний-238 спонтанно делится, излучая бета-минус-частицы, которые образуют плутоний-238.

Обычно содержание 239Pu в смеси составляет 90-95 %, 240Pu-1-7 %, содержание других изотопов не превышает десятых долей процента. Изотопы с большими периодами полураспада - 242Pu и 244Pu получают при продолжительном облучении нейтронами 239Pu. Причем выход 242Pu составляет несколько десятков процентов, а 244Pu - доли процента от содержания 242Pu. Небольшие количества изотопно-чистого плутония-238 образуются при облучении нейтронами нептуния-237. Легкие изотопы плутония с массовыми числами 232-237 обычно получают на циклотроне при облучении изотопов урана α-частицами.

При втором способе промышленного производства 239Pu используют пьюрекс-процесс, основанный на экстракции трибутилфосфатом в легком разбавителе. В первом цикле осуществляют совместную очистку Pu и U от продуктов деления, а затем их разделение. Во втором и третьем циклах плутоний подвергают дальнейшей очистке и концентрированию. Схема такого процесса основана на разнице в свойствах четырех- и шестивалентных соединений разделяемых элементов.

Первоначально отработавшие ТВЭЛы демонтируются и оболочка, содержащая отработавший плутоний и уран, удаляется физическими и химическими способами. Далее извлеченное ядерное топливо растворяют в азотной кислоте. Ведь она - сильный окислитель при растворении и уран, и плутоний, и примеси окисляются. Атомы плутония с нулевой валентностью превращаются в Pu+6, происходит растворение, как плутония, так и урана. Из такого раствора девяносто четвертый элемент восстанавливают до трехвалентного состояния сернистым газом, а затем осаждают фторидом лантана (LаF3).

Однако осадок кроме плутония содержит нептуний и редкоземельные элементы, но основная масса (уран) остается в растворе. Далее плутоний вновь окисляют до Pu+6 и вновь добавляют фторид лантана. Теперь уже редкоземельные элементы переходят в осадок, а плутоний остается в растворе. Далее окисляется нептуний до четырехвалентного состояния броматом калия, так как на плутоний этот реактив не действует, то при вторичном осаждении тем же фторидом лантана трехвалентный плутоний переходит в осадок, а нептуний остается в растворе. Конечными продуктами таких операций являются плутонийсодержащие соединения - двуокись PuO2 или фториды (PuF3 или PuF4), из которых (путем восстановления парами бария, кальция или лития) получают металлический плутоний.

Получение более чистого плутония можно достичь электролитическим рафинированием пирохимически произведенного металла, что производится в ячейках для электролиза при температуре 700° C с электролитом из калия, натрия и хлорида плутония с применением вольфрамового или танталового катода. Получаемый таким образом плутоний имеет чистоту 99,99 %.

Для получения больших количеств плутония строятся реакторы-размножители, так называемые «бридеры» (от английского глагола to breed - размножать). Свое название данные реакторы получили благодаря своей возможности получения делящегося материала в количестве, превышающем затраты этого материала на получение. Отличие реакторов такого типа от остальных заключается в том, что нейтроны в них не замедляются (отсутствует замедлитель, например, графит) для того, чтобы их как можно больше прореагировало с 238U.

После реакции образуются атомы 239U, которые в дальнейшем и образуют 239Pu. Ядро такого реактора, содержащее PuO2 в обедненном диоксиде урана (UO2), окружено оболочкой из еще более обедненного диоксида урана-238 (238UO2), в которой и образуется 239Pu. Совместное использование 238U и 235U позволяет «бриддерам» производить из природного урана энергии в 50-60 раз больше других реакторов. Однако у этих реакторов существует большой недостаток - ТВЭЛы обязаны охлаждаться средой отличной от воды, которая снижает их энергию. Поэтому было решено использовать жидкий натрий в качестве охладителя.

Строительство таких реакторов в Соединенных Штатах Америки началось после окончания Второй Мировой Войны, СССР и Великобритания приступили к их созданию лишь в 1950-х годах.

Физические свойства

Плутоний - очень тяжелый (плотность при н. у. 19,84 г/см³) серебристый металл, в очищенном состоянии очень похожий на никель, однако на воздухе плутоний быстро окисляется, тускнеет, образую радужную пленку, сначала светло-желтую, затем переходящую в темно-пурпурную. При сильном окислении на поверхности металла появляется оливково-зеленый порошок оксида (PuO2).

Плутоний - очень электроотрицательный и химически активный металл, во много раз больше, даже чем уран. Имеет семь аллотропных модификаций (α, β, γ, δ, δ", ε и ζ), которые меняются в определенном температурном отрезке и при определенном диапазоне давления. При комнатной температуре плутоний находится в α-форме - это наиболее распространённая для плутония аллотропная модификация. В альфа фазе чистый плутоний хрупок и весьма жёсток - данная структура примерно такая же жёсткая, как серый чугун, если она не легирована другими металлами, которые придадут сплаву пластичность и мягкость. Кроме того, в этой максимально плотной форме плутоний - шестой по плотности элемент (тяжелее его только осмий, иридий, платина, рений и нептуний). Дальнейшие аллотропные превращения плутония сопровождаются скачкообразными изменениями плотности. Так, например, при нагревании от 310 до 480 °С он не расширяется, как другие металлы, а сжимается (фазы «дельта» и «дельта-прим»). При расплавлении (переход из фазы «эпсилон» в жидкую фазу) плутоний также сжимается, позволяя нерасплавленному плутонию всплывать.

Плутоний отличает большое количество необычных свойств: у него самая низкая теплопроводность из всех металлов - при 300 K она составляет 6,7Вт/(м К); у плутония самая низкая электропроводность; в своей жидкой фазе - плутоний самый вязкий металл. Удельное сопротивление девяносто четвертого элемента при комнатной температуре очень велико для металла, и эта особенность будет усиливаться с понижением температуры, что для металлов не свойственно. Такая «аномалия» прослеживается вплоть до температуры 100 К - ниже этой отметки электрическое сопротивление будет уменьшаться. Однако, с отметки в 20 К сопротивление вновь начинает возрастать из-за радиационной активности металла.

Плутоний обладает самым высоким удельным электрическим сопротивлением среди всех изученных актиноидов (на данный момент), которое составляет 150 мкОм см (при 22 °C). Этот металл имеет низкую температуру плавления (640 °C) и необычно высокую температуру кипения (3 227 °C). Ближе к точке плавления жидкий плутоний имеет очень высокий показатель вязкости и поверхностного натяжения по сравнению с другими металлами.

Благодаря своей радиоактивности, плутоний теплый на ощупь. Большой кусок плутония в термооболочке разогревается до температуры, превышающей температуру кипения воды! Кроме того, вследствие своей радиоактивности плутоний со временем претерпевает изменения в своей кристаллической решётке - происходит некое подобие отжига благодаря самооблучению из-за повышения температуры выше 100 K.

Наличие большого количества аллотропных модификаций у плутония делает его трудным металлом в обработке и выкатывании из-за фазовых переходов. Мы уже знаем, что в альфа-форме девяносто четвертый элемент схож по свойствам с чугуном, однако имеет свойство изменяться и превращаться в пластичный материал, и образовывать ковкую β-форму при более высоких интервалах температур. Плутоний в δ-форме обычно стабилен при значениях температуры от 310 °C до 452 °C, но может существовать и при комнатной температуре, если легирован малопроцентным содержанием алюминия, церия или галлия. Находясь в сплаве с этими металлами, плутоний может использоваться при сварке. Вообще дельта-форма имеет более ярко выраженные характеристики металла - по прочности и способности к ковке близка к алюминию.

Химические свойства

Химические свойства девяносто четвертого элемента во многом схожи со свойствами его предшественников в периодической системе - ураном и нептунием. Плутоний довольно активный металл, он образует соединения со степенями окисления от +2 до +7. В водных растворах элемент проявляет следующие степени окисления: Pu (III), в качестве Pu3+ (существует в кислых водных растворах, имеет светло-фиолетовый цвет); Pu (IV), в качестве Pu4+ (шоколадный оттенок); Pu (V), в качестве PuO2+ (светлый раствор); Pu (VI), в качестве PuO22+ (светло-оранжевый цвет раствора) и Pu(VII), в качестве PuO53- (зелёный раствор).

Причем указанные ионы (кроме PuO53-) могут находиться в растворе одновременно в равновесии, что объясняется наличием 5f-электронов, которые расположены на локализованной и делокализованной зоне электронной орбитали. При pH 5-8 доминирует Pu (IV), который наиболее устойчив среди остальных валентностей (степеней окисления). Ионы плутония всех степеней окисления склонны к гидролизу и комплексообразованию. Способность образовывать такие соединения увеличивается в ряду Pu5+

Компактный плутоний медленно окисляется на воздухе, покрываясь радужной маслянистой пленкой оксида. Известны следующие окислы плутония: PuO, Pu2O3, PuO2 и фаза переменного состава Pu2O3 - Pu4O7 (бертоллиды). В присутствии незначительного количества влаги скорость окисления и корродирования значительно возрастает. Если металл достаточно долго подвергается воздействию малых количеств влажного воздуха, то на его поверхности образуется диоксид плутония (PuO2). При недостатке кислорода может образоваться и его дигидрид (PuH2). Удивительно, но плутоний покрывается ржавчиной в атмосфере инертного газа (например, аргона) с парами воды гораздо быстрее, чем на сухом воздухе или в чистом кислороде. На самом деле этот факт легко объяснить - прямое действие кислорода формирует на поверхности плутония слой оксида, препятствующего дальнейшему окислению, присутствие влаги производит рыхлую смесь из оксида и гидрида. Кстати, благодаря именно такому покрытию металл становится пирофорным, то есть он способен к самовозгоранию, по этой причине металлический плутоний, как правило, обрабатывается в инертной атмосфере аргона или азота. При этом кислород является защитным веществом и предотвращает воздействие влаги на металл.

Девяносто четвертый элемент реагирует с кислотами, кислородом и их парами, но только не со щелочами. Плутоний хорошо растворим лишь в очень кислых средах (например, соляная кислота HCl), а так же растворяется в в хлороводороде, иодоводороде, бромоводороде, 72 % хлорной кислоте, 85 % ортофосфорной кислоте H3PO4, концентрированной CCl3COOH, сульфаминовой кислоте и кипящей концентрированной азотной кислоте. В растворах щелочей плутоний заметно не растворяется.

При воздействии щелочей на растворы, содержащие четырех валентный плутоний, выпадает осадок гидроксида плутония Pu(OH)4 xH2O, обладающий основными свойствами. При воздействии щелочей на растворы солей, содержащих PuO2+, выпадает амфотерный гидроксид PuO2OH. Ему отвечают соли - плутониты, например, Na2Pu2O6.

Плутониевые соли легко гидролизируются при контакте с нейтральными или щелочными растворами, создавая нерастворимую гидроокись плутония. Концентрированные растворы плутония нестабильны, вследствие радиолитического разложения, ведущего к выпадению осадка.

Дозообразующие радионуклиды. Часть 5
Дата: 03/08/2011
Тема: Здоровье

Приведены основные характеристики дозообразующих радионуклидов. Основной упор сделан на изложение потенциальной опасности радионуклидов. В целях безопасности применения рассмотрены радиотоксические и радиобиологические эффекты воздействия радиоизотопов на организм и окружающую среду. Изложенное даёт возможность более осознанно относиться к радиационной опасности дозообразующих радионуклидов.

11. Цезий-137


Цезий (
лат. caesium - Cs, химический элемент I группы Периодической системы Менделеева, атомный номер 55, атомная масса 132,9054. Назван от латинского caesius - голубой (открыт по ярко-синим спектральным линиям). Серебристо-белый металл из группы щелочных; легкоплавкий, мягкий, как воск; плотность 1,904 г/см 3 и имеет уд. вес 1,88 (при 15ºС), Т пл - 28,4ºС. На воздухе воспламеняется, с водой реагирует со взрывом. Основной минерал - поллуцит.


Известно 34 изотопа цезия с массовыми числами 114-148, из них только один (133 Cs) стабильный, остальные - радиоактивны. Изотопная распространенность цезия-133 в природе составляет приблизительно 100%. 133 Cs относится к рассеянным элементам. В незначительных количествах он содержится практически во всех объектах внешней среды. Кларковое (среднее) содержание нуклида в земной коре - 3,7∙10 -4 %, в почве - 5∙10 -5 %. Цезий - постоянный микроэлемент растительных и животных организмов: в живой фитомассе содержится в количестве 6∙10 -6 %, в организме человека - примерно 4 г. При равномерном распределении цезия-137 в организме человека с удельной активностью 1 Бк/кг мощность поглащенной дозы, по данным различных авторов, варьирует от 2,14 до 3,16 мкГр/год .


В природе этот серебристо-белый щелочной металл встречается в виде стабильного изотопа Cs-133. Это редкий элемент со средним содержанием в земной коре 3,7∙10 -4 %. Обычный, природный цезий и его соединения не радиоактивны . Радиоактивен только искусственно получаемый изотоп 137 Cs. Долгоживущий радиоактивный изотоп цезия 137 Cs образуется при делении ядер 235 U и 239 Pu с выходом около 7%. При радиоактивном распаде 137 Cs испускает электроны с максимальной энергией 1173 кэВ и превращается в короткоживущий γ-излучающий нуклид 137m Ba (табл. 18). Обладает наивысшей среди щелочных металлов химической активностью, хранить его можно только в запаянных вакуумированных ампулах.


Таблица 18
Основные характеристики цезия-137
Изотоп
Основной вид
излучения
Период полураспада, T 1/2
Значение УВ вода , Бк/дм 3
Природные вариации ОА в водах (min-max), Бк/дм 3

137 Cs
(+ 137m Ba)


β(E β max = 1173 кэВ);
γ(E γ = 661 кэВ)

11,0 (НРБ-99)
8,0 (СанПиН 2.3.2.560-96)

n∙10 -3 - n∙10 -2

Металлический цезий применяют в фотоэлементах и фотоумножителях при изготовлении фотокатодов и как геттер в люминесцентных трубках. Пары цезия - рабочее тело в МГД-генераторах, газовых лазерах. Соединения цезия используют в оптике и приборах ночного видения.


В продуктах ядерной реакции деления имеются значительные количества разложенных радионуклидов цезия, среди которых наиболее опасен 137 Cs . Источником загрязнения могут быть и радиохимические заводы. Выброс цезия-137 в окружающую среду происходит в основном в результате ядерных испытаний и аварий на предприятиях атомной энергетики. К началу 1981 г. суммарная активность поступившего в окружающую среду 137 Cs достигла 960 ПБк. Плотность загрязнения в Северном и Южном полушариях и в среднем на земном шаре составляла соответственно 3.42; 0.86 и 3.14 кБк/м 2 , а на территории бывшего СССР в среднем - 3,4 кБк/м 2 .

При аварии на Южном Урале в 1957 г. произошёл тепловой взрыв хранилища радиоактивных отходов, и в атмосферу поступили радионуклиды с суммарной активностью 74 ПБк, в том числе 0,2 ПБк 137 Cs. При пожаре на РХЗ в Уиндскейле в Великобритании в 1957 г. произошёл выброс 12 ПБк радионуклидов, из них 46 ТБк 137 Cs. Технологический сброс радиоактивных отходов предприятия «Маяк» на Южном Урале в р. Течу в 1950 г. составил 102 ПБк, в том числе 137 Cs 12,4 ПБк. Ветровой вынос радионуклидов из поймы оз. Карачай на Южном Урале в 1967 г. составил 30 ТБк. На долю 137 Cs пришлось 0,4 ТБк.


Настоящей катастрофой стала в 1986 г. авария на Чернобыльской атомной электростанции (ЧАЭС): из разрушенного реактора было выброшено 1850 ПБк радионуклидов, при этом на долю радиоактивного цезия пришлось 270 ПБк. Распространение радионуклидов приняло планетарные масштабы. На Украине, в Белоруссии и Центральном районе Российской Федерации выпало более половины от общего количества радионуклидов, осевших на территории СНГ. Известны случаи загрязнения внешней среды в результате небрежного хранения источников радиоактивного цезия для медицинских и технологических целей.


Цезий-137 используется в гамма-дефектоскопии, измерительной технике, для радиационной стерилизации пищевых продуктов, медицинских препаратов и лекарств, в радиотерапии для лечения злокачественных опухолей. Также цезий-137 используется в производстве радиоизотопных источников тока, где он применяется в виде хлорида цезия (плотность 3,9 г/см 3 , энерговыделение около 1,27 Вт/ см 3 ).


Цезий-137 используется в датчиках предельных уровней сыпучих веществ в непрозрачных бункерах. Цезий-137 имеет определенные преимущества перед радиоактивным кобальтом-60: более длительный период полураспада и менее жесткое гамма-излучение. В связи с этим приборы на основе 137 Cs долговечнее, а защита от излучения менее громоздка. Однако, эти преимущества становятся реальными лишь при отсутствии примеси 137 Cs с более коротким периодом полураспада и более жестким гамма-излучением .


Широкое распространение получил в качестве источника γ-излучения. В медицине цезиевые источники, наряду с радиевыми, применяются в терапевтических γ-аппаратах и устройствах для внутритканевой и полостной гамма-терапии. С 1967 г. явление перехода между двумя сверхтонкими уровнями основного состояния атома цезия-137 используется для определения одной из основных единиц измерения времени - секунды.


Радиоцезий 137 Cs исключительно техногенный радионуклид, его наличие в изучаемой среде связано с испытаниями ядерного оружия или с использованием ядерных технологий. 137 Cs - β-γ-излучающий радиоизотоп цезия, один из главных компонентов техногенного радиоактивного загрязнения биосферы. Образуется в результате ядерных реакций деления. Содержится в радиоактивных выпадениях, сбросах, отходах радиохимических заводов. ОА 137 Cs в питьевой воде ограничивается уровнями 11Бк/дм 3 или 8 Бк/дм 3 .


Геохимической особенностью 137 Cs является его способность очень прочно задерживаться природными сорбентами. Вследствие этого при поступлении в ОПС его активность быстро уменьшается по мере удаления от источника загрязнения. Природные воды сравнительно быстро самоочищаются за счет поглощения 137 Cs взвесями и донными осадками .


Цезий может в значительных количествах накапливаться в сельскохозяйственных растениях, и, в частности, в семенах. Наиболее интенсивно поступает из водной среды и с высокой скоростью передвигается по растению. Внесение в почву калийных удобрений и известкование значительно снижают поглощение цезия растениями, и тем сильнее, чем выше доля калия .


Коэффициент накопления особенно высок у пресноводных водорослей и арктических наземных растений (особенно, лишайников), из животного мира - у северных оленей через ягель, которым они питаются. Внутрь живых организмов цезий-137 в основном проникает через органы дыхания и пищеварения. Этот нуклид поступает в основном с пищей в количестве 10 мкг/сут. Выводится из организма преимущественно с мочой (в среднем 9 мкг/сут). Цезий - постоянный химический микрокомпонент организма растений и животных. Главный накопитель цезия в организме млекопитающих - мышцы, сердце, печень. Около 80 % попавшего в организм цезия накапливается в мышцах, 8 % - в скелете, оставшиеся 12 % распределяются равномерно по другим тканям.

Цезий-137 выводится в основном через почки и кишечник. Биологический период полувыведения накопленного цезия-137 для человека принято считать равным 70 суткам (согласно данным Международной комиссии по радиологической защите). В процессе выведения значительные количества цезия повторно всасываются в кровь в нижних отделах кишечника. Эффективным средством для уменьшения всасывания цезия в кишечнике является сорбент ферроцианид, который связывает нуклид в неусваиваемую форму. Кроме того, для ускорения выведения нуклида стимулируют естественные выделительные процессы, используют различные комплексообразователи.


Развитие радиационных поражений у человека можно ожидать при поглощении дозы примерно в 2 Гр и более. Дозам в 148, 170 и 740 МБк соответствуют лёгкая, средняя и тяжёлая степени поражения, однако лучевая реакция отмечается уже при единицах МБк.

137 Cs принадлежит к группе радиоактивных веществ, равномерно распределяющихся по органам и тканям, по этой причине относится к среднеопасным по радиотоксичности нуклидам. Он обладает хорошей способностью проникать в организм вместе с калием посредством пищевых цепочек.


Основной источник поступления цезия в организм человека - загрязнённые нуклидом продукты питания животного происхождения. Содержание радиоактивного цезия в литре коровьего молока достигает 0,8-1,1 % от суточного поступления нуклида, козьего и овечьего - 10-20 %. Однако в основном он накапливается в мышечной ткани животных: в 1 кг мяса коров, овец, свиней и кур содержится 4,8, 20 и 26 % (соответственно) от суточного поступления цезия. В белок куриных яиц попадает меньше - 1,8-2,1 %. Ещё в больших количествах цезий накапливается в мышечных тканях гидробионтов: активность 1 кг пресноводных рыб может превышать активность 1 л воды более чем в 1000 раз (у морских - ниже) .


Основной источник цезия для населения России - молочные и зерновые продукты (после аварии на ЧАЭС - молочные и мясные), в странах Европы и США цезий поступает в основном с молочными и мясными продуктами и меньше - с зерновыми и овощными . Создаваемое таким образом постоянное внутреннее облучение наносит существенно больший вред, чем внешнее облучение этим изотопом .


Опубликованные методики измерения активности 137 Cs по его β-излучению предполагают радиохимическую подготовку пробы и выделение цезия с высокой степенью чистоты для исключения мешающего влияния других β-излучателей. Современные методы определения 137 Cs основаны, как правило, на регистрации гамма-излучения с энергией 661,6 кэВ. Они подразделяются на инструментальные, нижний предел определения (НПО) которых составляет 1-10 Бк/кг (или Бк/дм 3), и методы с предварительным химическим обогащением (НПО до 10 -2 Бк/кг). Для концентрирования 137 Cs из разбавленных растворов чаще всего используют его соосаждение с ферроцианидами никеля, меди, цинка, железа, кобальта, кальция, магния или сорбенты-коллекторы на их основе.


12. Плутоний

Плутоний (plutonium ) Pu - искусственный радиоактивный химический элемент III группы Периодической системы элементов Менделеева, атомный номер 94, трансурановый элемент, относится к актиноидам. Первый нуклид 238 Pu открыт в 1940 г. Г.Т.Сиборгом (G.Th.Seaborg), Э.М.Мак-Милланом (E.M. McMillan), Дж.Э.Кеннеди (J.E.Kennedy) и А.Ч.Валом (A.Ch.Wahl). Весной 1941 г. Сиборг с сотрудниками обнаружили и впервые выделили четверть микрограмма 239 Pu после распада 239 Np, образовавшегося при облучении 238 U ядрами тяжелого водорода (дейтонами). Вслед за ураном и нептунием новый элемент получил свое имя в честь открытой в 1930 г. планеты Плутон. С 24 августа 2006 г. по решению Международного астрономического союза Плутон более не является планетой Солнечной системы. В греческой мифологии Плутон (он же Аид) - бог царства мертвых .

Плутоний Pu - опаснейший тяжелый металл. Имеет 15 радиоактивных изотопов с массовыми числами от 232 до 246, в основном α-излучателей. На Земле имеются лишь следы этого элемента и только в урановых рудах. Величины Т½ всех изотопов плутония много меньше возраста Земли, и поэтому весь первичный плутоний (существовавший на нашей планете при её формировании) полностью распался. Однако ничтожные количества 239 Pu постоянно образуются при β-распаде 239 Np, который, в свою очередь, возникает при ядерной реакции урана с нейтронами (например, нейтронами космического излучения).

Поэтому следы плутония обнаружены в урановых рудах в таких микроскопических количествах (0,4-15 частей Pu на 10 12 частей U), что о его добыче из урановых руд не может быть и речи. Около 5000 кг его выделилось в атмосферу в результате ядерных испытаний. По некоторым оценкам, почва в США содержит в среднем 2 миллиКюри (28 мг) плутония на км 2 от выпадения радиоактивных осадков. Это типичный продукт творения человеческих рук; его получают в ядерных реакторах из урана-238, который последовательно превращается в уран-239, нептуний-239 и плутоний-239.


Чётные изотопы плутоний-238, -240, -242 не являются делящимися материалами, но могут делиться под действием нейтронов высокой энергии (являются делимыми). Они не способны поддерживать цепную реакцию (за исключением плутония-240). Получены изотопы 232 Pu - 246 Pu; среди продуктов взрыва термоядерных бомб обнаружены также 247 Pu и 255 Pu. Наиболее устойчив малодоступный 244 Pu (α-распад и спонтанное деление, Т 1/2 = 8,2·10 7 лет, атомная масса 244,0642). В свободном виде хрупкий серебристо-белый металл. Следы изотопов 247 Pu и 255 Pu обнаружены в пыли, собранной после взрывов термоядерных бомб.


На ядерные исследования и создание атомной промышленности в США, как позднее и в СССР, были брошены огромные силы и средства. В короткий срок были изучены ядерные и физико-химические свойства плутония (табл. 19) . Первый ядерный заряд на основе плутония был взорван 16 июля 1945 г. на полигоне Аламогордо (испытание под кодовым названием «Тринити»). В СССР первые опыты по получения 239 Pu были начаты в 1943-1944 гг. под руководством академиков И.В. Курчатова и В.Г. Хлопина. Впервые плутоний в СССР был выделен из облучённого нейтронами урана. В 1945 г. и в 1949 г. в СССР начал работать первый завод по радиохимическому выделению.


Таблица 19
Ядерные свойства важнейших изотопов плутония
Ядерные свойства
Плутоний-238
Плутоний-239
Плутоний-240
Плутоний-241
Плутоний-242

Период полураспада, годы






Активность, Ки/г






Тип радиоактив-ного распада

альфа-распад


альфа-распад


альфа-распад


бета-распад


альфа-распад


Энергия радиоактив-ного распада, МэВ






Примечание. Все изотопы плутония - слабые гамма-излучатели. Плутоний-241 превращается в америций-241 (мощный гамма-излучатель)


Лишь два изотопа плутония имеют практическое применение в промышленных и военных целях. Плутоний-238, получаемый в ядерных реакторах из нептуния-237, используется для производства компактных термоэлектрических генераторов. Шесть миллионов электрон-вольт освобождается при распаде одного атомного ядра плутония-238. В химической реакции та же энергия выделяется при окислении нескольких миллионов атомов. В источнике электричества, содержащем один килограмм плутония-238, развивается тепловая мощность 560 МВт. Максимальная мощность такого же по массе химического источника тока - 5 Вт.

Существует немало излучателей с подобными энергетическими характеристиками, но одна особенность плутония-238 делает этот изотоп незаменимым. Обычно альфа-распад сопровождается сильным гамма-излучением, проникающим через большие толщи вещества. 238 Pu - исключение. Энергия гамма-квантов, сопровождающих распад его ядер, невелика, защититься от неё несложно: излучение поглощается тонкостенным контейнером. Мала и вероятность самопроизвольного деления ядер этого изотопа. Поэтому он нашёл применение не только в источниках тока, но и в медицине. Батарейки с плутонием-238 служат источником энергии в специальных стимуляторах сердечной деятельности, срок службы которых достигает 5 лет и более.
Плутониево-бериллиевый сплав работает как лабораторный источник нейтронов. Изотоп Pu-238 находится в ряде атомных термоэлектрических генераторов энергии на борту космических исследовательских аппаратов. Благодаря долгому времени жизни и высокой тепловой мощности, этот изотоп используется почти исключительно в РИТЭГ космического назначения, например, на всех аппаратах, улетавших дальше орбиты Марса.

Из всех изотопов наиболее интересным представляется Pu-239, его период полураспада 24110 лет. Как делящийся материал, 239 Pu широко используют в качестве ядерного топлива в атомных реакторах (энергия, освобождающаяся при расщеплении 1 г 239 Pu, эквивалентна теплоте, выделяющейся при сгорании 4000 кг угля), в производстве ядерного оружия (т.н. «оружейный плутоний») и в атомных и термоядерных бомбах, а также для ядерных реакторов на быстрых нейтронах и атомных реакторов гражданского и исследовательского назначения. Как источник α-излучения плутоний, наряду с 210 Po, нашел широкое применение в промышленности, в частности, в устройствах элиминации электростатических зарядов. Этот изотоп находит применение и в составе контрольно-измерительной аппаратуры .


Плутоний имеет множество специфических свойств. Он обладает самой низкой теплопроводностью изо всех металлов, самой низкой электропроводностью, за исключением марганца. В своей жидкой фазе это самый вязкий металл. Температура плавления -641°C; температура кипения -3232°C; плотность - 19,84 (в альфа-фазе). Это крайне электроотрицательный, химически активный элемент, гораздо в большей степени, чем уран. Он быстро тускнеет, образуя радужную плёнку (подобно радужной масляной плёнки), вначале светло-жёлтую, со временем переходящую в тёмно-пурпурную. Если окисление довольно велико, на его поверхности появляется оливково-зелёный порошок оксида (PuO 2). Плутоний охотно окисляется, и быстро коррозирует даже в присутствии незначительной влажности .

При изменении температуры плутоний подвергается самым сильным и неестественным изменениям плотности. Плутоний обладает шестью различными фазами (кристаллическими структурами) в твёрдой форме, больше чем любой другой элемент.

Соединения плутония с кислородом, углеродом и фтором используются в ядерной промышленности (непосредственно или в качестве промежуточных материалов). Металлический плутоний не растворяется в азотной кислоте, но диоксид плутония растворяется в горячей концентрированной азотной кислоте. Однако в твердой смеси с диоксидом урана (например, в отработавшем топливе ядерных реакторов) растворимость диоксида плутония в азотной кислоте увеличивается, поскольку диоксид урана растворяется в ней. Эта особенность используется при переработке ядерного топлива (табл. 20).


Таблица 20
Соединения плутония и их применение
Соединения плутония
Применение

Диоксид плутония PuO 2

В смеси с диоксидом урана (UO 2) используется в качестве топлива для ядерных реакторов

Карбид плутония (PuC)
Дикарбид плутония (PuС 2)
Трикарбид плутония (PuC 3)

Потенциально могут использоваться в качестве топлива для реакторов-бридеров (размножителей)

Трифторид плутония (PuF 3)
Тетрафторид плутония (PuF 4)

Являются промежуточными соединениями при производстве металлического плутония


Нитраты плутония - Pu(NO 3) 4 и Pu(NO 3) 3

Не используются. Являются продуктами переработки (при извлечении плутония из отработавшего ядерного топлива)

Важнейшие соединения плутония: PuF 6 (легкокипящая жидкость; термически значительно менее стабилен, чем UF 6), твердые оксид PuO 2 , карбид PuC и нитрид PuN, которые в смесях с соответствующими соединениями урана могут использоваться как ядерное горючее.


Наибольшее распространение получили такие радиоизотопные устройства, как ионизационные сигнализаторы пожара или радиоизотопные индикаторы дыма. При механической обработке плутоний легко образует аэрозоли.


В природе образуется при β-распаде Np-239, который, в свою очередь, возникает при ядерной реакции урана-238 с нейтронами (например, нейтронами космического излучения). Промышленное производство Pu-239 также основано на этой реакции и происходит в атомных реакторах. Плутоний-239 первым образуется в ядерном реакторе при облучении урана-238, чем длительнее этот процесс, тем больше возникает более тяжелых изотопов плутония. Плутоний-239 должен быть химически отделен от продуктов деления и оставшегося в ОЯТ урана. Этот процесс называется репроцессингом. Поскольку все изотопы имеют одинаковое число протонов и разное - нейтронов, их химические свойства (химические свойства зависят от числа протонов в ядре) тождественны, поэтому очень трудно разделить изотопы с помощью химических методов.


Последующее отделение Pu-239 от урана, нептуния и высокорадиоактивных продуктов деления осуществляют на радиохимических заводах радиохимическими методами (соосаждением, экстракцией, ионными обменами др.) Металлический плутоний обычно получают востановлением PuF 3 , PuF 4 или PuO 2 парами бария, кальция или лития.

Затем используют его способность к расщеплению под действием нейтронов в атомных реакторах, а способность к самоподдерживающейся цепной реакции деления при наличии критической массы (7 кг) - в атомных и термоядерных бомбах, где он является основным компонентом. Критическая масса его α-модификации 5,6 кг (шар диаметром 4,1 см). 238 Pu используется в «атомных» электрических батарейках, обладающих длительным сроком службы. Изотопы плутония служат сырьем для синтеза трансплутониевых элементов (Am и др.).


Облучая Pu-239 нейтронами, можно получать смесь изотопов, из которых изотоп Pu-241, также как и Pu-239, является делящимся и мог бы быть использован для получения энергии. Однако, его период полураспада 14,4 года, что не позволяет его длительно сохранять, к тому же, распадаясь, он образует неделящийся Am-241 (α-, γ-радиоактивный) с периодом полураспада 432,8 года. Получается, что примерно через каждые 14 лет количество Am-241 в окружающей среде удваивается. Обнаружить его, как и другие трансурановые элементы, обычной γ-спектрометрической аппаратурой сложно и требуются весьма специфичные и дорогостоящие методы обнаружения. Изотоп Pu- 242 по ядерным свойствам наиболее похож на уран-238, Am-241, получавшийся при распаде изотопа Pu-241, использовался в детекторах дыма.


Америций-241, также как и другие трансурановые элементы (нептуний, калифорний и другие), является экологически опасным радионуклидом, являясь преимущественно α-излучающим элементом, обуславливающим внутреннее облучение организма.


Накопленного на Земле плутония более чем достаточно . Его производства абсолютно не требуется как для обороны, так и энергетики. Тем не менее, из 13 существовавших в СССР реакторов, производивших оружейный плутоний, продолжают работать 3: два из них в г. Северске. Последний такой реактор в США был остановлен в 1988 г. .


Качество плутония определяется по процентному содержанию в нем изотопов (кроме плутония-239) (табл. 21).


На сентябрь 1998 г. цены на плутоний, установленные изотопным отделением Ок-риджской Национальной лаборатории (ORNL) были таковы: $8,25/мг за плутоний-238 (97% чистоты); $4,65/мг за плутоний-239 (>99,99%); $5,45/мг за плутоний-240 (>95%); $14,70/мг за плутоний-241 (>93%) и $19,75/мг за плутоний-242.

Таблица 21
Качество плутония

Эта классификация плутония по качеству, разработанная Департаментом энергетики США, достаточно произвольна. Например, из топливного и реакторного плутония, менее пригодных для военных целей, чем оружейный, также можно сделать ядерную бомбу. Плутоний любого качества может быть применен для создания радиологического оружия (когда радиоактивные вещества распыляются без осуществления ядерного взрыва).


Всего 60 лет назад зеленые растения и животные не содержали в своем составе плутоний, сейчас до 10 т его распылено в атмосфере. Около 650 т наработано атомной энергетикой и свыше 300 т военным производством. Значительная часть всего производства плутония находится в России .


Попадая в биосферу, плутоний мигрирует по земной поверхности, включаясь в биохимические циклы. Плутоний концентрируется морскими организмами: его коэффициент накопления (т.е. отношение концентраций в организме и во внешней среде) для водорослей составляет 1000-9000, для планктона (смешанного) - около 2300, для моллюсков - до 380, для морских звёзд - около 1000, для мышц, костей, печени и желудка рыб - 5,570, 200 и 1060 соответственно. Наземные растения усваивают плутоний главным образом через корневую систему и накапливают его до 0,01% от своей массы. С 70-х гг. 20 века доля плутония в радиоактивном загрязнении биосферы возрастает (облучённость морских беспозвоночных за счёт плутония становится больше, чем за счёт 90 Sr и 137 Cs). ПДК для 239 Pu в открытых водоёмах и воздухе рабочих помещений составляет соответственно 81,4 и 3,3ּ 10 -5 Бк/л .


Поведение плутония в воздушной среде определяет условия для безопасного хранения и обращения с ним в процессе выработки (табл. 22). Окисление плутония создает риск для здоровья людей, так как диоксид плутония, будучи устойчивым соединением, легко попадает в легкие при дыхании. Его удельная активность в 200 тыс. раз выше, чем у урана, к тому же освобождения организма от попавшего в него плутония практически не происходит в течение всей жизни человека.


Период биологического полувыведения плутония 80-100 лет при нахождении в костной ткани, концентрация его там практически постоянна. Период полувыведения из печени - 40 лет. Хелатные добавки могут ускорить выведение плутония .

Таблица 22
Изменение свойств плутония в воздушной среде
Форма и условия среды
Реакция плутония

Металлические слитки
при комнатной температуре

Относительно инертен,
медленно окисляется

Металлический порошок
при комнатной температуре

Быстро реагирует с образованием
диоксида плутония (PuO 2)

Порошок мелкого измельчения:
с частицами d<1 мм и d>1 мм
сс частицами d>1 мм

Произвольно возгорается:
при температуре 150°С и 500°С соответственно

При повышенных температуре и влажности

Реагирует с образованием
диоксида плутония (PuO 2)


Плутоний называют «ядерным ядом», его допустимое содержание в организме человека оценивается нанограммами. Международная комиссия по радиологической защите (МКРЗ) установила норму ежегодного поглощения на уровне 280 нанограмм. Это значит, что для профессионального облучения концентрация плутония в воздухе не должна превышать 7 пикоКюри/м 3 . Максимально допустимая концентрация Pu-239 (для профессионального персонала) 40 наноКюри (0.56 микрограмма) и 16 наноКюри (0.23 микрограмма) для лёгочной ткани.

Поглощение 500 мг плутония как мелкораздробленного или растворённого материала может привести к смерти от острого облучения пищеварительной системы за несколько дней или недель. Вдыхание 100 мг плутония в виде частиц оптимального для удержания в лёгких размера 1-3 микрона ведёт к смерти от отёка лёгких за 1-10 дней. Вдыхание дозы в 20 мг приводит к смерти от фиброза примерно за месяц. Для доз много меньших этих величин проявляется хронический канцерогенный эффект.
На протяжении всей жизни риск развития рака лёгких для взрослого человека зависит от количества попавшего в тело плутония. Приём внутрь 1 микрограмма плутония представляет риск в 1 % развития рака (нормальная вероятность рака 20 %). Соответственно 10 микрограмм увеличивают риск рака с 20 % до 30 %. Попадание 100 микрограмм или более гарантирует развитие рака лёгких (обычно через несколько десятилетий), хотя свидетельства повреждения лёгких могут появиться в течении нескольких месяцев. Если он проникает в систему кровообращения, то с большой вероятностью начнёт концентрироваться в тканях, содержащих железо: костном мозге, печени, селезёнке. Если 1,4 микрограмма разместятся в костях взрослого человека, в результате ухудшится иммунитет и через несколько лет может развиться рак.

Дело в том, что Pu-239 является α-излучателем, и каждая его α-частица в биологической ткани образует вдоль своего короткого пробега 150 тыс. пар ионов, повреждая клетки, производя различные химические превращения. 239 Pu принадлежит к веществам со смешенным типом распределения, поскольку накапливается не только в костном скелете, но и в печени. Очень хорошо удерживается в костях и практически не удаляется из организма благодаря замедленности обменных процессов в костной ткани. По этой причине данный нуклид принадлежит к разряду наиболее токсичных .


Находясь в организме, плутоний становится постоянным источником α-излучения для человека, вызывая костные опухоли, рак печени и лейкемию, нарушения кроветворения, остеосаркомы, рак лёгких, являясь, таким образом, одним из самых опасных канцерогенов (табл. 23).

Список литературы


1. Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38--99. - М., ВИНИТИ РАН.
Тихонов М.Н., Муратов О.Э., Петров Э.Л. Изотопы и радиационные технологии: постижение реальности и взгляд в будущее // Экологическая экспертиза. Обз.инф., 2006, №6, с. 38--99. - М., ВИНИТИ РАН.2. Баженов В.А., Булдаков Л.А., Василенко И.Я. и др. Вредные химические вещества. Радиоактивные вещества: Справочное издание //Под ред. В.А. Филова и др.-Л.: Химия, 1990. - 464 с.
3. Химическая энциклопедия: в 5 т. // Гл. ред. Зефиров Н.С. - М.: Большая Российская энциклопедия, 1995. - Т. 4, с. 153-154 (радий), с. 282 (рубидий), с. 283 (рутений), с. 300 (свинец), с. 560 (технеций), с. 613 (торий); 1999. - Т. 5, с. 41 (уран), с. 384 (цирконий).
4. Химическая энциклопедия: в 5 т. // Гл. ред. Кнунянц И.Л. - М.: Советская энциклопедия, 1990.- Т.1, с. 78 (актиний), с. 125 (эмериций), с. 241 (барий); Т. 2, с. 284 (калий), с. 286 (калифорний), с.414 (кобальт), с. 577 (лантан); 1992. Т. 3, с. 580 (плутоний).
5. Несмеянов А. Н. Радиохимия. - М.: Химия, 1978. - 560 с.
6. Широков Ю.М., Юдин Н.П. Ядерная физика. - М., Наука, 1980.
7. Козлов В.Ф. Справочник по радиационной безопасности. - 5-е изд., перераб. и доп. - М.: Энергоатомиздат, 1999. - 520 с.
8. Моисеев А.А., Иванов В.И. Справочник по дозиметрии и радиационной гигиене. - М.: Энергоатомиздат, 1992. - 252 с.
9. Кириллов В.Ф., Книжников В.А., Коренков И.П. Радиационная гигиена // Под ред. Л.А. Ильина. - М.: Медицина, 1988. - 336 с.
10. Рихванов Л.П. Общие и региональные проблемы радиоэкологии. - Томск: ТПУ, 1997. - 384 с.
11. Бэгнал К. Химия редких радиоактивных элементов. Полоний - актиний: Пер. с англ. // Под ред. Ю.В. Гагаринского. - М.: Изд-во иностр. лит-ры. - 256 с.
12. Гусев Н.Г., Рубцов П.М., Коваленко В.В., Колобашкин В.В. Радиационные характеристики продуктов деления: Справочник. - М.: Атомиздат, 1974. - 224 с.
13. Трансурановые элементы в окружающей среде // Под ред. У.С. Хэнсона: Пер. с англ. - М.: Мир, 1985. - 344 с.
14. Смыслов А.А. Уран и торий в земной коре. - Л.: Недра, 1974. - 232 с.
15. Ионизирующие излучения: источники и биологические эффекты. Научный комитет ООН по действию атомной радиации (НКДАР). Доклад за 1982 г. в Генеральной Ассамблее. Т.1. - Нью-Йорк, ООН, 1982. - 882 с.
16. Источники, эффекты и опасность ионизирующей радиации // Доклад Научного комитета ООН по действию атомной радиации Генеральной Ассамблее за 1988 год. - М.: Мир, 1992. - 1232 с.
17. Василенко И.Я. Токсикология продуктов ядерного деления. - М.: Медицина, 1999. - 200 с.
18. Израэль Ю.А., Стукин Е.Д. Гамма - излучение радиоактивных выпадений. - М.: Атомиздат, 1967. - 224 с.
19. Алексахин Р.М., Архипов Н.П., Василенко И.Я. Тяжелые естественные радионуклиды в биосфере. - М.: Наука, 1990. - 368 с.
20. Криволуцкий Д.А. и др. Действие ионизирующей радиации на биогеоценоз. - М.: Гидрометеоиздат, 1977. - 320 с.
21. Булдаков Л.А. Радиоактивные вещества и человек.-М.: Энергоатомиздат, 1990 - 160 с.
22. Рузер Л.С. Радиоактивные аэрозоли //Под ред. А.Н. Мартынюка. - М.: Энергоатомиздат, 2001. - 230 с.
23. Журавлев В.Ф. Токсикология радиоактивных веществ. - М.: Энергоатомиздат, 1990. - 336 с.
24. Моисеев А.А. Цезий-137. Окружающая среда - человек. - М.: Энергоатомиздат, 1985. - 121 с.
25. Тихонов М.Н., Муратов О.Э. Альтернативный ядерно-топливный цикл: необходимость и актуальность // Экология промышленного производства, 2009, вып. 4,с. 40-48.
26. Алексахин Р.М., Васильев А.В., Дикарев В.Г. и др. Сельскохозяйственная радиоэкология. - М., Экология, 1991.
27. Чалов П.И. Изотопное фракционирование природного урана. - Фрунзе: Илим, 1975.
28. Пилипенко А.Т. Натрий и калий // Справочник по элементарной химии. - 2-е изд. - Киев: Наукова думка, 1978, с. 316-319.
29. Тихонов М.Н. Радоновая опасность: источники, дозы и нерешенные вопросы // Экологическая экспертиза. Обз.инф., 2009, вып. 5, с. 2-108. - М., ВИНИТИ РАН.
30. Гудзенко В.В., Дубинчук В.Т. Изотопы радия и радона в природных водах. - М.: Наука, 1987. - 157 с.
31. Мартынюк Ю.Н. К вопросу о качестве питьевой воды по радиационному признаку // АНРИ, 1996, №1, с. 64-66.
32. Борисов Н.Б., Ильин Л.А., Маргулис У.Я. и др. Радиационная безопасность при работе с полонием-210 // Под ред. И.В. Петрянова и Л.А. Ильина. - М.: Атомиздат, 1980. - 264 с.
33. Методика выполнения измерений объемной активности полония-210 и свинца-210 в природных водах альфа-бета-радиометрическим методом с радиохимической подготовкой. - М., 2001.
34. Гусев Н.Г., Беляев В.А. Радиоактивные выбросы в биосфере: Справочник. - М.: Энергоатомиздат, 1991. - 255 с.
35. Болсуновский А.Я. Производство ядерных материалов в России и загрязнение окружающей среды. - В кн.: Атом без грифа «Секретно»: точки зрения. - Москва-Берлин, 1992, с. 9-29.
36. Федорова Е.А., Пономарева Р.П., Милакина Л.А. Закономерности поведения 14 С в системе атмосфера-растение в условиях непостоянной концетрации СО 2 в воздухе // Экология, 1985, №5, с. 24-29.
37. Пономарева Р.П., Милакина Л.А., Савина В.И. Закономерности поведения углерода-14 в пищевых цепях человека в условиях действия локального источника выбросов // Атомная промышленность: окружающая среда и здоровье населения / Под ред. Л.А. Булдакова, С.Н. Демина. - М., 1988, с. 240-249.
38. Рублевский В.П., Голенецкий С.П., Кирдин Г.С. Радиоактивный углерод в биосфере. - М.: Атомиздат, 1979. - 150 с.
39. Артемова Н.Е., Бондарев А.А., Карпов В.И., Курдюмов Б.С. и др. Допустимые выбросы радиоактивных и вредных химических веществ в приземном слое атмосферы. - М.: Атомиздат, 1980. - 235 с.
40. Демин С.Н. Проблема углерода-14 в районе ПО «Маяк» // Вопросы радиационной безопасности, 2000, №1, с. 61-66.
41. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Атомная энергия, 1958, Т. 4, №6, с. 576-580.
42. Сахаров А.Д. Радиоактивный углерод ядерных взрывов и непороговые биологические эффекты // Наука и всеобщая безопасность, 1991, Т. 1, №4, с. 3-8.
43. Германский А.М. Атмосферный радиоуглерод и смертность в Дании. Интернет-журнал «Коммерческая биотехнология», 2005.
44. Эванс Э. Тритий и его соединения. - М., Атомиздат, 1970.
45. Ленский Л.А. Физика и химия трития. - М., Атомиздат, 1981.
46. Беловодский Л.Ф., Гаевой В.К., Гришмановский В.И. Тритий. - М., Атомиздат, 1985.
47. Андреев Б.М., Зельвенский Я.Д., Катальников С.Г. Тяжелые изотопы водорода в ядерной технике. - М., Атомиздат, 1987.
48. Леенсон И.А. 100 вопросов и ответов по химии. - М., АСТ-Астрель, 2002.
49. Дубасов Ю.В., Окунев Н.С., Пахомов С.А. Мониторинг радионуклидов ксенона и криптона-85 в Северо-Западном регионе России в 2007-2008 гг. // Сб.докл. III Межд. ядерного форума 22-26 сент. 2008 г. - СПб.: НОУ ДПО «АТОМПРОФ», 2008, с. 57-62.
50. Ксензенко В.И., Стасиневич Д.С. Химия и технология брома, йода и их соединений. 2-е изд. - М.: Ин.лит., 1995. - 562 с.
51. Бэгнал К. Химия селена, теллура и полония. - М., 1971.
52. Методические указания МУ 2.6.1.082-96. Оценка дозы внутреннего облучения щитовидной железы йодом-131 по результатам определения содержания йода-129 в объектах окружающей среды (Утв. Зам. Главного государственного санитарного врача РФ 24 мая 1996 г.).
53. Гаврилин Ю.И., Волков В.Я., Макаренкова И.И. Ретроспективное восстановление интегральных выпадений йода-131 по населенным пунктам Брянской области России на основе результатов определения в 2008 г. содержания йода-129 в почве // Радиационная гигиена, 2009, Т. 2, №3, с. 38-44.
54. Василенко И.Я., Василенко О.И. Стронций радиоактивный // Энергия: экономика, техника, экология, 2002, №4, с. 26-32.
55. Василенко И.Я. Радиоактивный цезий-137 // Природа, 1999, №3, с. 70-76.
56. Плутониевая экономика: выход или тупик. Плутоний в окружающей среде // Сост. Миронова Н.И. - Челябинск, 1998. - 74 с.
57. Блюменталь У.Б. Химия циркония. - М., 1963.
58. Перцов Л.А. Ионизирующее излучение биосферы. - М.: Атомиздат, 1973. - 288 с.
59. Популярная библиотека химических элементов. Кн.2. Серебро-нильсборий и далее. - 3-е изд. - М.: Наука, 1983. - 573 с.
60. Огородников Б.И. Торон и его дочерние продукты в проблеме ингаляционного облучения // Атомная техника за рубежом, 2006, №6, с. 10-15.
61. Ярмоненко С.П. Радиобиология человека и животных.-М.: Высшая школа, 1988.-424 с.
62. Бабаев Н.С., Демин В.Ф., Ильин Л.А. и др. Ядерная энергетика, человек и окружающая среда /Под ред. акад. А.П. Александрова. - М.: Энергоатомиздат, 1984. - 312 с.
63. Абрамов Ю.В. и др. Определение доз внешнего облучения органов и тканей в соответствии с требованиями НРБ -99 в производственных условиях //Медицина экстремальных ситуаций, 2000, № 3 (6), с.55-60.
64. Алексахин Р.М., Булдаков Л.А., Губанов В.А. и др. Крупные радиационные аварии: последствия и защитные меры /Под общ. ред. Л.А.Ильина и В.А. Губанова. - М.: ИздАТ, 2001. -752 с.
65. Машкович В.П., Кудрявцева А.В. Защита от ионизирующих излучений: Справочник, 4-е изд. - М.: Энергоатомиздат, 1995.
66. Радиационная медицина. Т.2. Радиационные поражения человека / Под общ. ред. акад. РАМН Л.А.Ильина. -М.:ИздАТ, 2001. -432 с.

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами — ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238 .

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада . Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше одного грама , , или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного — или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента — порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная . Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в , хлорной, .

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только , , нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония ». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

Этот металл называют драгоценным, однако не за красоту, а за незаменимость. В периодической системе Менделеева этот элемент занимает ячейку под номером 94. Именно с ним ученые связывают свои самые большие надежды, и именно плутоний они называют самым опасным металлом для человечества.

Плутоний: описание

По внешнему виду это серебристо-белый металл. Он является радиоактивным и может быть представлен в виде 15 изотопов, имеющих различные периоды полураспада, к примеру:

  • Pu-238 – около 90 лет
  • Pu-239 – около 24 тысяч лет
  • Pu-240 – 6580 лет
  • Pu-241 – 14 лет
  • Pu-242 – 370 тысяч лет
  • Pu-244 – около 80 миллионов лет

Этот металл нельзя добыть из руды, поскольку он является продуктом радиоактивного превращения урана.

Как получают плутоний?

Производство плутония требует расщепления урана, что можно осуществить только в атомных реакторах. Если же говорить о присутствии элемента Pu в земной коре, то на 4 миллиона тонн урановой руды будет приходиться всего 1 грамм чистого плутония. И этот грамм образуется путем естественного захвата нейтронов ядрами урана. Таким образом, чтобы получить это ядерное горючее (обычно – изотоп 239-Pu) в количестве нескольких килограмм необходимо проведение сложного технологического процесса в атомном реакторе.

Свойства плутония


Радиоактивный металл плутоний обладает следующими физическими свойствами:

  • плотность 19,8 г/см 3
  • температура плавления – 641°C
  • температура кипения – 3232°C
  • теплопроводность (при 300 K) – 6,74 Вт/(м·К)

Плутоний радиоактивен, поэтому теплый на ощупь. При этом для этого металла характерна самая низкая теплопроводность и электропроводность. Жидкий плутоний является самым вязким из всех существующих металлов.

Малейшее изменение температуры плутония приводит к моментальному изменению плотности вещества. В целом же, масса плутония постоянно меняется, поскольку ядра этого металла находятся в состоянии постоянного деления на более мелкие ядра и нейтроны. Критическая масса плутония – так называют минимальную массу делимого вещества, при которой протекание деления (цепной ядерной реакции) остается возможным. К примеру, критическая масса оружейного плутония – 11 кг (для сравнения, критическая масса высокообогащенного урана – 52 кг).

Уран и плутоний – основное ядерное горючее. Чтобы получить плутоний в больших количествах применяется две технологии:

  • облучение урана
  • облучение трансурановых элементов, полученных из отработанного топлива


Оба способа представляют собой отделение плутония и урана в результате протекания химической реакции.

Для получения чистого плутония-238 применяется нейтронное облучение нептуния-237. Этот же изотоп участвует в создании оружейного плутония-239, в частности, он является промежуточным продуктом распада. $1 млн. – именно столько составляет цена за 1 кг плутония-238.