Какая самая большая сумма в мире. Не вошедшее в сборник сочинений

Когда-то я прочитал один трагический рассказ, где повествуется о чукче, которого полярники научили считать и записывать цифры. Магия чисел настолько поразила его, что он решил записать в подаренной полярниками тетради абсолютно все существующие в мире числа подряд, начиная с единицы. Чукча забрасывает все свои дела, перестаёт общаться даже с собственной женой, не охотится больше на нерпу и тюленей, а всё пишет и пишет в тетрадь числа…. Так проходит год. В конце концов тетрадь заканчивается и чукча понимает, что он смог записать лишь малую часть всех чисел. Он горько плачет и в отчаянии сжигает свою исписанную тетрадку, чтобы вновь начать жить простой жизнью рыболова, не думая больше о таинственной бесконечности чисел…

Не будем повторять подвиг этого чукчи и пытаться найти самое большое число, так как любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Зададимся хоть и похожим, но другим вопросом: какое из чисел, имеющих собственное название, наибольшее?

Очевидно, что хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Так, например, числа 1 и 100 имеют собственные названия «единица» и «сто», а название числа 101 уже составное («сто один»). Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и найдём, в конце концов, это самое большое число!

Число

Латинское количественное числительное

Русская приставка


«Короткая» и «длинная» шкала

История современной системы наименования больших чисел ведёт начало с середины XV века, когда в Италии стали пользоваться словами «миллион» (дословно — большая тысяча) для тысячи в квадрате, «бимиллион» для миллиона в квадрате и «тримиллион» для миллиона в кубе. Об этой системе мы знаем благодаря французскому математику Николя Шюке (Nicolas Chuquet , ок. 1450 - ок. 1500): в своём трактате «Наука о числах» (Triparty en la science des nombres, 1484) он развил эту идею, предложив дальше воспользоваться латинскими количественными числительными (см. таблицу), добавляя их к окончанию «-иллион». Так, «бимиллион» у Шюке превратился в биллион, «тримиллионом» в триллион, а миллион в четвёртой степени стал «квадриллионом».

В системе Шюке число 10 9 , находившееся между миллионом и биллионом, не имело собственного названия и называлось просто «тысяча миллионов», аналогично 10 15 называлось «тысяча биллионов», 10 21 — «тысяча триллионов» и т.д. Это было не очень удобно, и в 1549 году французский писатель и учёный Жак Пелетье (Jacques Peletier du Mans, 1517-1582) предложил поименовать такие «промежуточные» числа при помощи тех же латинских префиксов, но окончания «-иллиард». Так, 10 9 стало называться «миллиардом», 10 15 — «биллиардом», 10 21 — «триллиардом» и т.д.

Система Шюке-Пелетье постепенно стала популярна и ей стали пользоваться по всей Европе. Однако в XVII веке возникла неожиданная проблема. Оказалось, что некоторые учёные почему-то стали путаться и называть число 10 9 не «миллиардом» или «тысячей миллионов», а «биллионом». Вскоре эта ошибка быстро распространилась, и возникла парадоксальная ситуация — «биллион» стал одновременно синонимом «миллиарда» (10 9) и «миллиона миллионов» (10 18).

Эта путаница продолжалась достаточно долго и привела к тому, что в США создали свою систему наименования больших чисел. По американской системе названия чисел строятся так же, как в системе Шюке, — латинский префикс и окончание «иллион». Однако величины этих чисел отличаются. Если в системе Шюке названия с окончанием «иллион» получали числа, которые являлись степенями миллиона, то в американской системе окончание «-иллион» получили степени тысячи. То есть тысяча миллионов (1000 3 = 10 9) стала называться «биллионом», 1000 4 (10 12) — «триллионом», 1000 5 (10 15) — «квадриллионом» и т.д.

Старая же система наименования больших чисел продолжала использоваться в консервативной Великобритании и стала во всём мире называться «британской», несмотря на то, что она была придумана французами Шюке и Пелетье. Однако в 1970-х годах Великобритания официально перешла на «американскую систему», что привело к тому, что называть одну систему американской, а другую британской стало как-то странно. В результате, сейчас американскую систему обычно называют «короткой шкалой», а британскую систему или систему Шюке-Пелетье — «длинной шкалой».

Чтобы не запутаться, подведём промежуточный итог:

Название числа

Значение по «короткой шкале»

Значение по «длинной шкале»

Миллиард

Биллиард

Триллион

Триллиард

Квадриллион

Квадриллиард

Квинтиллион

Квинтиллиард

Секстиллион

Секстиллиард

Септиллион

Септиллиард

Октиллион

Октиллиард

Нониллион

Нониллиард

Дециллион

Дециллиард


Короткая шкала наименования используется сейчас в США , Великобритании, Канаде , Ирландии , Австралии , Бразилии и Пуэрто-Рико. В России, Дании , Турции и Болгарии также используется короткая шкала, за исключением того, что число 10 9 называется не «биллион», а «миллиард». Длинная же шкала в настоящее время продолжает использоваться в большинстве остальных стран.

Любопытно, что у нас в стране окончательный переход к короткой шкале произошёл лишь во второй половине XX века. Так, например, ещё Яков Исидорович Перельман (1882-1942) в своей «Занимательной арифметике» упоминает параллельное существование в СССР двух шкал. Короткая шкала, согласно Перельману, использовалась в житейском обиходе и финансовых расчётах, а длинная — в научных книгах по астрономии и физике. Однако сейчас использовать в России длинную шкалу неправильно, хотя числа там получаются и большие.

Но вернемся к поиску самого большого числа. После дециллиона названия чисел получаются путём объединения приставок. Так получаются такие числа как ундециллион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион, новемдециллион и т.д. Однако эти названия нам уже не интересны, так как мы условились найти наибольшее число с собственным несоставным названием.

Если же мы обратимся к латинской грамматике, то обнаружим, что несоставных названий для чисел больше десяти у римлян было всего три: viginti — «двадцать», centum — «сто» и mille — «тысяча». Для чисел больше, чем «тысяча», собственных названий у римлян не имелось. Например, миллион (1 000 000) римляне называли «decies centena milia», то есть «десять раз по сотне тысяч». По правилу Шюке, эти три оставшихся латинских числительных дают нам такие названия для чисел как «вигинтиллион», «центиллион» и «миллеиллион».


Итак, мы выяснили, что по «короткой шкале» максимальное число, которое имеет собственное название и не является составным из меньших чисел — это «миллеиллион» (10 3003). Если бы в России была бы принята «длинная шкала» наименования чисел, то самым большим числом с собственным названием оказался бы «миллеиллиард» (10 6003).

Однако существуют названия и для ещё больших чисел.

Числа вне системы

Некоторые числа имеют собственное название, без какой-либо связи с системой наименования при помощи латинских префиксов. И таких чисел немало. Можно, к примеру, вспомнить число e , число «пи», дюжину, число зверя и пр. Однако так как нас сейчас интересуют большие числа, то рассмотрим лишь те числа с собственным несоставным названием, которые больше миллиона.

До XVII века на Руси применялась собственная система наименования чисел. Десятки тысяч назывались «тьмами», сотни тысяч — «легионами», миллионы — «леодрами», десятки миллионов — «воронами», а сотни миллионов — «колодами». Этот счёт до сотен миллионов назывался «малым счётом», а в некоторых рукописях авторами рассматривался и «великий счёт», в котором употреблялись те же названия для больших чисел, но уже с другим смыслом. Так, «тьма» означала уже не десять тысяч, а тысячу тысяч (10 6), «легион» — тьму тем (10 12); «леодр» — легион легионов (10 24), «ворон» — леодр леодров (10 48). «Колодой» же в великом славянском счёте почему-то называли не «ворон воронов» (10 96), а лишь десять «воронов», то есть 10 49 (см. таблицу).

Название числа

Значение в «малом счёте»

Значение в «великом счёте»

Обозначение

Ворон (вран)


Число 10 100 также имеет собственное название и придумал его девятилетний мальчик. А дело было так. В 1938 году американский математик Эдвард Кэснер (Edward Kasner , 1878-1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirott), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение» , где и рассказал любителям математики о числе гугол. Еще более широкую известность гугол получил в конце 1990-х, благодаря названной в честь него поисковой машине Google.

Название для ещё большего числа, чем гугол, возникло в 1950 году благодаря отцу информатики Клоду Шеннону (Claude Elwood Shannon , 1916-2001). В своей статье «Программирование компьютера для игры в шахматы» он попытался оценить количество возможных вариантов шахматной игры. Согласно ему, каждая игра длится в среднем 40 ходов и на каждом ходе игрок делает выбор в среднем из 30 вариантов, что соответствует 900 40 (примерно равное 10 118) вариантам игры. Эта работа стала широко известной, и данное число стало называться «числом Шеннона».

В известном буддийском трактате Джайна-сутры, относящемся к 100 году до н.э., встречается число «асанкхейя» равное 10 140 . Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Девятилетний Милтон Сиротта вошёл в историю математики не только тем, что придумал число гугол, но и тем, что одновременно с ним предложил ещё одно число — «гуголплекс», которое равно 10 в степени «гугол», то есть единице с гуголом нулей.

Ещё два числа, большие, чем гуголплекс, были предложены южноафриканским математиком Стэнли Скьюзом (Stanley Skewes, 1899-1988) при доказательстве гипотезы Римана. Первое число, которое позже стали называть «первым числом Скьюза», равно e в степени e в степени e в степени 79, то есть e e e 79 = 10 10 8,85.10 33 . Однако «второе число Скьюза» ещё больше и составляет 10 10 10 1000 .

Очевидно, что чем больше в числе степеней в степенях, тем сложнее записывать числа и понимать их значение при чтении. Мало того, возможно придумать такие числа (и они, кстати, уже придуманы), когда степени степеней просто не помещаются на страницу. Да, что на страницу! Они не уместятся даже в книгу размером с всю Вселенную! В таком случае встаёт вопрос как же такие числа записывать. Проблема, к счастью, разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой, придумывал свой способ записи, что привело к существованию нескольких не связанных друг с другом способов для записи больших чисел — это нотации Кнута, Конвея, Штейнгауза и др. С некоторыми из них нам сейчас предстоит разобраться.

Иные нотации

В 1938 году, в тот же год, когда девятилетний Милтон Сиротта придумал числа гугол и гуголплекс, в Польше вышла книжка о занимательной математике «Математический калейдоскоп», написанная Гуго Штейнгаузом (Hugo Dionizy Steinhaus , 1887-1972). Эта книга стала очень популярной, выдержала множество изданий и была переведена на многие языки, в том числе на английский и русский. В ней Штейнгауз, обсуждая большие числа, предлагает простой способ их записи, используя три геометрические фигуры — треугольник, квадрат и круг:

«n в треугольнике» означает «n n »,
«n в квадрате» означает «n в n треугольниках»,
«n в круге» означает «n в n квадратах».

Объясняя этот способ записи, Штейнгауз придумывает число «мега», равное 2 в круге и показывает, что оно равно 256 в «квадрате» или 256 в 256 треугольниках. Чтобы подсчитать его, надо 256 возвести в степень 256, получившееся число 3,2.10 616 возвести в степень 3,2.10 616 , затем получившееся число возвести в степень получившегося числа и так далее всего возводить в степень 256 раз. К примеру, калькулятор в MS Windows не может подсчитать из-за переполнения 256 даже в двух треугольниках. Приблизительно же это огромное число составляет 10 10 2.10 619 .

Определив число «мега», Штейнгауз предлагает уже читателям самостоятельно оценить другое число — «медзон», равное 3 в круге. В другом издании книги Штейнгауз вместо медзона предлагает оценить ещё большее число — «мегистон», равное 10 в круге. Вслед за Штейнгаузом я также порекомендую читателям на время оторваться от этого текста и самим попробовать записать эти числа при помощи обычных степеней, чтобы почувствовать их гигантскую величину.

Впрочем, есть названия и для бо льших чисел. Так, канадский математик Лео Мозер (Leo Moser , 1921-1970) доработал нотацию Штейнгауза, которая была ограничена тем, что, если бы потребовалось записать числа много большие мегистона, то возникли бы трудности и неудобства, так как пришлось бы рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

«n треугольнике» = n n = n ;
«n в квадрате» = n = «n в n треугольниках» = n n ;
«n в пятиугольнике» = n = «n в n квадратах» = n n ;
«n в k+ 1-угольнике» = n [k +1] = «n в n k -угольниках» = n [k ] n .

Таким образом, по нотации Мозера штейнгаузовский «мега» записывается как 2, «медзон» как 3, а «мегистон» как 10. Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге — «мегагоном». И предложил число «2 в мегагоне», то есть 2. Это число стало известным как число Мозера или просто как «мозер».

Но даже и «мозер» не самое большое число. Итак, самым большим числом, когда-либо применявшимся в математическом доказательстве, является «число Грэма». Впервые это число было использовано американским математиком Рональдом Грэмом (Ronald Graham) в 1977 году при доказательстве одной оценки в теории Рамсея, а именно при подсчёте размерности определённых n -мерных бихроматических гиперкубов. Известность же число Грэма получило лишь после рассказа о нём в вышедшей в 1989 году книге Мартина Гарднера «От мозаик Пенроуза к надёжным шифрам».

Чтобы объяснить, как велико число Грэма, придётся объяснить ещё один способ записи больших чисел, введённый Дональдом Кнутом в 1976 году. Американский профессор Дональд Кнут придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх:

Думаю, что всё понятно, поэтому вернёмся к числу Грэма. Рональд Грэм предложил так называемые G-числа:

Вот число G 64 и называется числом Грэма (обозначается оно часто просто как G). Это число является самым большим известным в мире числом, использованным в математическом доказательстве, и занесено даже в «Книгу рекордов Гиннеса».

И напоследок

Написав эту статью, не могу не удержаться от искушения и не придумать своё число. Пусть это число будет называться «стасплекс » и будет равно числу G 100 . Запомните его, и когда ваши дети будут спрашивать, какое самое большое в мире число, говорите им, что это число называется стасплекс .

Новости партнёров

Мир науки просто удивителен своими знаниями. Однако постигнуть их все не сможет даже самый гениальный в мире человек. Но стремиться к этому нужно. Именно поэтому в данной статье хочется разобраться, какое оно, самое большое число.

О системах

В первую очередь необходимо сказать о том, что в мире существует две системы именования чисел: американская и английская. В зависимости от этого одно и то же число может называться по-разному, хотя и иметь одно и то же значение. И в самом начале нужно разобраться именно с этими нюансами, дабы избежать неопределенности и путаницы.

Американская система

Интересным окажется тот факт, что данная система используется не только в Америке и Канаде, но и в России. К тому же она имеет и свое научное название: система именования чисел с короткой шкалой. Как же называются в данной системе большие числа? Так, секрет довольно-таки простой. В самом начале будет идти латинское порядковое числительное, после же просто добавится всем известный суффикс «-иллион». Интересным окажется следующий факт: в переводе с латинского языка число «миллион» можно перевести как «тысячища». Американской системе принадлежат следующие числа: триллион - это 10 12 , квинтиллион - 10 18 , октиллион - 10 27 и т. д. Несложно будет также разобраться, сколько же нулей записано в числе. Для этого нужно знать простую формулу: 3*х + 3 (где «х» в формуле - это латинское числительное).

Английская система

Однако, несмотря на простоту американской системы, в мире все же более распространена английская система, которая является системой названия чисел именно с длинной шкалой. С 1948 года ею пользуются в таких странах, как Франция, Великобритания, Испания, а также в странах - бывших колониях Англии и Испании. Построение чисел тут также довольно-таки простое: к латинскому обозначению добавляют суффикс «-иллион». Дальше же, если число в 1000 раз больше, добавляется уже суффикс «-иллиард». Как можно узнать количество спрятанных в числе нулей?

  1. Если число заканчивается на «-иллион», нужна будет формула 6*х + 3 («х» - это латинское числительное).
  2. Если число заканчивается на «-иллиард», надо будет формула 6*х + 6 (где «х», опять же, латинское числительное).

Примеры

На данном этапе для примера можно рассмотреть, как же будут называться одни и те же числа, однако в разной шкале.

Можно без проблем увидеть, что одно и то же название в разных системах обозначает разные числа. Например, триллион. Поэтому, рассматривая число, все же предварительно нужно узнать, согласно какой системе оно записано.

Внесистемные числа

Стоит сказать и о том, что, помимо системных, существуют также и внесистемные числа. Может, среди них затерялось самое большое число? Стоит в этом разобраться.

  1. Гугол. Это число десять в сотой степени, т. е. единица, за которой следует сто нулей (10 100). О данном числе впервые было сказано в далеком 1938 году ученым Эдвардом Каснером. Весьма интересный факт: всемирная поисковая система «Гугл» названа в честь довольно-таки большого на то время числа - гугол. А название ему придумал малолетний племянник Каснера.
  2. Асанкхейя. Это весьма интересное название, которое с санскрита переводится как «неисчислимый». Числовое значение ее - единица со 140 нулями - 10 140 . Интересным окажется следующий факт: это было известно людям еще в 100 году до н. э., о чем говорит запись в Джайна-сутре, известном буддийском трактате. Данное число считалось особенным, ведь было мнение, что столько же нужно космических циклов, чтобы достичь нирваны. Также на то время это число считалось самым большим.
  3. Гуголплекс. Это число придумано все тем же Эдвардом Каснером и его вышеупомянутым племянником. Числовое его обозначение - десять в десятой степени, которая, в свою очередь, состоит в сотой степени (т. е. десять в степени гуголплекс). Также ученый сказал, что таким образом можно получить настолько большое число, насколько хочется: гуголтетраплекс, гуголгексаплекс, гуголоктаплекс, гуголдекаплекс и т. д.
  4. Число Грэма - G. Это самое большое число, признано таковым в недалеком 1980 году Книгой рекордов Гиннеса. Оно существенно больше, нежели гуголплекс и его производные. А ученые и вовсе говорили о том, что вся Вселенная не в состоянии в себя вместить всю десятичную запись числа Грэма.
  5. Число Мозера, число Скьюза. Эти числа также считаются одними из самых больших и применяются они чаще всего при решении различных гипотез и теорем. А так как эти числа невозможно записать общепринятыми всеми законами, каждый ученый делает это по-своему.

Последние разработки

Однако все же стоит сказать о том, что нет предела совершенству. И многие ученые считали и считают, что еще пока не найдено самое большое число. Ну и, конечно же, честь это сделать выпадет именно им. Над данным проектом длительное время работал американский ученый из Миссури, труды его увенчались успехом. 25 января 2012 года он нашел новое самое большое число в мире, которое состоит из семнадцати миллионов цифр (что является 49-м числом Мерсенна). Примечание: до этого времени самым большим считалось число, найденное компьютером в 2008 году, насчитывало оно 12 тысяч цифр и выглядело следующим образом: 2 43112609 - 1.

Не впервой

Стоит сказать о том, что это было подтверждено научными исследователями. Данное число прошло три уровня проверки тремя учеными на разных компьютерах, на что ушло целых 39 дней. Однако это не первые достижения в подобных поисках американского ученого. Ранее он уже открывал самые большие числа. Случалось это в 2005 и 2006 годах. В 2008 году компьютер прервал череду побед Кертиса Купера, однако он все же в 2012 году вернул себе пальму первенства и заслуженное звание первооткрывателя.

О системе

Как это все происходит, как ученые находят самые большие числа? Так, сегодня большинство работы за них делает компьютер. В данном же случае Купер использовал распределенные вычисления. Что это значит? Эти расчеты ведут программы, установленные на компьютерах пользователей Интернета, которые добровольно решили принять участие в исследовании. В рамках данного проекта было определено 14 чисел Мерсенна, названных так в честь французского математика (это простые числа, которые делятся только сами на себя и на единицу). В виде формулы это выглядит следующим образом: M n = 2 n - 1 («n» в данной формуле - это натуральное число).

О бонусах

Может возникнуть логический вопрос: а что заставляет ученых работать в этом направлении? Так, это, конечно же, азарт и желание быть первооткрывателем. Однако и тут есть свои бонусы: за свое детище Кертис Купер получил денежный приз в размере 3 тысячи долларов. Но и это еще не все. Специальный Фонд Электронных Рубежей (аббревиатура: EFF) поощряет такие вот поиски и обещает незамедлительно наградить денежным призом в размере 150 и 250 тысяч долларов тех, кто предоставит на рассмотрение простые числа, состоящие из 100 миллионов и миллиарда чисел. Так можно не сомневаться, что в этом направлении сегодня работает огромное количество ученых по всему миру.

Простые выводы

Итак, какое самое большое число сегодня? На данный момент найдено оно американским ученым из университета Миссури Кертисом Купером, которое можно записать следующим образом: 2 57885161 - 1. При этом оно также является 48 числом французского математика Мерсенна. Но стоит сказать о том, что конца в этих поисках быть не может. И неудивительно, если через определенное время ученые нам предоставят на рассмотрение следующее новонайденное самое большое в мире число. Можно не сомневаться, что произойдет это в самые ближайшие сроки.

Корректно ответить на этот вопрос нельзя, поскольку числовой ряд не имеет верхнего предела. Так, к любому числу достаточно всего лишь прибавить единицу, чтобы получить число ещё большее. Хотя сами числа бесконечны, собственных названий у них не так уж и много, так как большинство из них довольствуются именами, составленными из чисел меньших. Так, например, числа и имеют собственные названия «единица» и «сто», а название числа уже составное («сто один»). Понятно, что в конечном наборе чисел, которых человечество наградило собственным именем, должно быть какое-то наибольшее число. Но как оно называется и чему оно равно? Давайте же, попробуем в этом разобраться и заодно узнать, насколько большие числа придумали математики.

«Короткая» и «длинная» шкала


История современной системы наименования больших чисел ведёт начало с середины XV века, когда в Италии стали пользоваться словами «миллион» (дословно - большая тысяча) для тысячи в квадрате, «бимиллион» для миллиона в квадрате и «тримиллион» для миллиона в кубе. Об этой системе мы знаем благодаря французскому математику Николя Шюке (Nicolas Chuquet, ок. 1450 – ок. 1500): в своём трактате «Наука о числах» (Triparty en la science des nombres, 1484) он развил эту идею, предложив дальше воспользоваться латинскими количественными числительными (см. таблицу), добавляя их к окончанию «-иллион». Так, «бимиллион» у Шюке превратился в биллион, «тримиллионом» в триллион, а миллион в четвёртой степени стал «квадриллионом».

В системе Шюке число , находившееся между миллионом и биллионом, не имело собственного названия и называлось просто «тысяча миллионов», аналогично называлось «тысяча биллионов», - «тысяча триллионов» и т.д. Это было не очень удобно, и в 1549 году французский писатель и учёный Жак Пелетье (Jacques Peletier du Mans, 1517–1582) предложил поименовать такие «промежуточные» числа при помощи тех же латинских префиксов, но окончания «-иллиард». Так, стало называться «миллиардом», - «биллиардом», - «триллиардом» и т.д.

Система Шюке-Пелетье постепенно стала популярна и ей стали пользоваться по всей Европе. Однако в XVII веке возникла неожиданная проблема. Оказалось, что некоторые учёные почему-то стали путаться и называть число не «миллиардом» или «тысячей миллионов», а «биллионом». Вскоре эта ошибка быстро распространилась, и возникла парадоксальная ситуация - «биллион» стал одновременно синонимом «миллиарда» () и «миллиона миллионов» ().

Эта путаница продолжалась достаточно долго и привела к тому, что в США создали свою систему наименования больших чисел. По американской системе названия чисел строятся так же, как в системе Шюке, - латинский префикс и окончание «иллион». Однако величины этих чисел отличаются. Если в системе Шюке названия с окончанием «иллион» получали числа, которые являлись степенями миллиона, то в американской системе окончание «-иллион» получили степени тысячи. То есть тысяча миллионов () стала называться «биллионом», () - «триллионом», () - «квадриллионом» и т.д.

Старая же система наименования больших чисел продолжала использоваться в консервативной Великобритании и стала во всём мире называться «британской», несмотря на то, что она была придумана французами Шюке и Пелетье. Однако в 1970-х годах Великобритания официально перешла на «американскую систему», что привело к тому, что называть одну систему американской, а другую британской стало как-то странно. В результате, сейчас американскую систему обычно называют «короткой шкалой», а британскую систему или систему Шюке-Пелетье - «длинной шкалой».

Чтобы не запутаться, подведём промежуточный итог:

Название числа Значение по «короткой шкале» Значение по «длинной шкале»
Миллион
Миллиард
Биллион
Биллиард -
Триллион
Триллиард -
Квадриллион
Квадриллиард -
Квинтиллион
Квинтиллиард -
Секстиллион
Секстиллиард -
Септиллион
Септиллиард -
Октиллион
Октиллиард -
Нониллион
Нониллиард -
Дециллион
Дециллиард -
Вигинтиллион
Вигинтиллиард -
Центиллион
Центиллиард -
Миллеиллион
Миллеиллиард -

Короткая шкала наименования используется сейчас в США, Великобритании, Канаде, Ирландии, Австралии, Бразилии и Пуэрто-Рико. В России, Дании, Турции и Болгарии также используется короткая шкала, за исключением того, что число называется не «биллион», а «миллиард». Длинная же шкала в настоящее время продолжает использоваться в большинстве остальных стран.

Любопытно, что у нас в стране окончательный переход к короткой шкале произошёл лишь во второй половине XX века. Так, например, ещё Яков Исидорович Перельман (1882–1942) в своей «Занимательной арифметике» упоминает параллельное существование в СССР двух шкал. Короткая шкала, согласно Перельману, использовалась в житейском обиходе и финансовых расчётах, а длинная - в научных книгах по астрономии и физике. Однако сейчас использовать в России длинную шкалу неправильно, хотя числа там получаются и большие.

Но вернемся к поиску самого большого числа. После дециллиона названия чисел получаются путём объединения приставок. Так получаются такие числа как ундециллион, дуодециллион, тредециллион, кваттордециллион, квиндециллион, сексдециллион, септемдециллион, октодециллион, новемдециллион и т.д. Однако эти названия нам уже не интересны, так как мы условились найти наибольшее число с собственным несоставным названием.

Если же мы обратимся к латинской грамматике, то обнаружим, что несоставных названий для чисел больше десяти у римлян было всего три: viginti - «двадцать», centum - «сто» и mille - «тысяча». Для чисел больше, чем «тысяча», собственных названий у римлян не имелось. Например, миллион () римляне называли «decies centena milia», то есть «десять раз по сотне тысяч». По правилу Шюке, эти три оставшихся латинских числительных дают нам такие названия для чисел как «вигинтиллион», «центиллион» и «миллеиллион».

Итак, мы выяснили, что по «короткой шкале» максимальное число, которое имеет собственное название и не является составным из меньших чисел - это «миллеиллион» (). Если бы в России была бы принята «длинная шкала» наименования чисел, то самым большим числом с собственным названием оказался бы «миллеиллиард» ().

Однако существуют названия и для ещё больших чисел.

Числа вне системы


Некоторые числа имеют собственное название, без какой-либо связи с системой наименования при помощи латинских префиксов. И таких чисел немало. Можно, к примеру, вспомнить число e, число «пи», дюжину, число зверя и пр. Однако так как нас сейчас интересуют большие числа, то рассмотрим лишь те числа с собственным несоставным названием, которые больше миллиона.

До XVII века на Руси применялась собственная система наименования чисел. Десятки тысяч назывались «тьмами», сотни тысяч - «легионами», миллионы - «леодрами», десятки миллионов - «воронами», а сотни миллионов - «колодами». Этот счёт до сотен миллионов назывался «малым счётом», а в некоторых рукописях авторами рассматривался и «великий счёт», в котором употреблялись те же названия для больших чисел, но уже с другим смыслом. Так, «тьма» означала уже не десять тысяч, а тысячу тысяч () , «легион» - тьму тем () ; «леодр» - легион легионов () , «ворон» - леодр леодров (). «Колодой» же в великом славянском счёте почему-то называли не «ворон воронов» () , а лишь десять «воронов», то есть (см. таблицу).

Название числа Значение в «малом счёте» Значение в «великом счёте» Обозначение
Тьма
Легион
Леодр
Ворон (вран)
Колода
Тьма тем

Число также имеет собственное название и придумал его девятилетний мальчик. А дело было так. В 1938 году американский математик Эдвард Кэснер (Edward Kasner, 1878–1955) гулял по парку с двумя своими племянниками и обсуждал с ними большие числа. В ходе разговора зашла речь о числе со ста нулями, у которого не было собственного названия. Один из племянников, девятилетний Милтон Сиротта (Milton Sirott), предложил назвать это число «гуголом» (googol). В 1940 году Эдвард Кэснер совместно с Джеймсом Ньюманом написал научно-популярную книгу «Математика и воображение», где и рассказал любителям математики о числе гугол. Еще более широкую известность гугол получил в конце 1990-х, благодаря названной в честь него поисковой машине Google.

Название для ещё большего числа, чем гугол, возникло в 1950 году благодаря отцу информатики Клоду Шеннону (Claude Elwood Shannon, 1916–2001). В своей статье «Программирование компьютера для игры в шахматы» он попытался оценить количество возможных вариантов шахматной игры. Согласно ему, каждая игра длится в среднем ходов и на каждом ходе игрок делает выбор в среднем из вариантов, что соответствует (примерно равное ) вариантам игры. Эта работа стала широко известной, и данное число стало называться «числом Шеннона».

В известном буддийском трактате Джайна-сутры, относящемся к 100 году до н.э., встречается число «асанкхейя» равное . Считается, что этому числу равно количество космических циклов, необходимых для обретения нирваны.

Девятилетний Милтон Сиротта вошёл в историю математики не только тем, что придумал число гугол, но и тем, что одновременно с ним предложил ещё одно число - «гуголплекс», которое равно в степени «гугол», то есть единице с гуголом нулей.

Ещё два числа, большие, чем гуголплекс, были предложены южноафриканским математиком Стэнли Скьюзом (Stanley Skewes, 1899–1988) при доказательстве гипотезы Римана. Первое число, которое позже стали называть «первым числом Скьюза», равно в степени в степени в степени , то есть . Однако «второе число Скьюза» ещё больше и составляет .

Очевидно, что чем больше в числе степеней в степенях, тем сложнее записывать числа и понимать их значение при чтении. Мало того, возможно придумать такие числа (и они, кстати, уже придуманы), когда степени степеней просто не помещаются на страницу. Да, что на страницу! Они не уместятся даже в книгу размером с всю Вселенную! В таком случае встаёт вопрос как же такие числа записывать. Проблема, к счастью, разрешима, и математики разработали несколько принципов для записи таких чисел. Правда, каждый математик, кто задавался этой проблемой, придумывал свой способ записи, что привело к существованию нескольких не связанных друг с другом способов для записи больших чисел - это нотации Кнута, Конвея, Штейнгауза и др. С некоторыми из них нам сейчас предстоит разобраться.

Иные нотации


В 1938 году, в тот же год, когда девятилетний Милтон Сиротта придумал числа гугол и гуголплекс, в Польше вышла книжка о занимательной математике «Математический калейдоскоп», написанная Гуго Штейнгаузом (Hugo Dionizy Steinhaus, 1887–1972). Эта книга стала очень популярной, выдержала множество изданий и была переведена на многие языки, в том числе на английский и русский. В ней Штейнгауз, обсуждая большие числа, предлагает простой способ их записи, используя три геометрические фигуры - треугольник, квадрат и круг:

« в треугольнике» означает «»,
« в квадрате» означает « в треугольниках»,
« в круге» означает « в квадратах».

Объясняя этот способ записи, Штейнгауз придумывает число «мега», равное в круге и показывает, что оно равно в «квадрате» или в треугольниках. Чтобы подсчитать его, надо возвести в степень , получившееся число возвести в степень , затем получившееся число возвести в степень получившегося числа и так далее всего возводить в степень раз. К примеру, калькулятор в MS Windows не может подсчитать из-за переполнения даже в двух треугольниках. Приблизительно же это огромное число составляет .

Определив число «мега», Штейнгауз предлагает уже читателям самостоятельно оценить другое число - «медзон», равное в круге. В другом издании книги Штейнгауз вместо медзона предлагает оценить ещё большее число - «мегистон», равное в круге. Вслед за Штейнгаузом я также порекомендую читателям на время оторваться от этого текста и самим попробовать записать эти числа при помощи обычных степеней, чтобы почувствовать их гигантскую величину.

Впрочем, есть названия и для больших чисел. Так, канадский математик Лео Мозер (Leo Moser, 1921–1970) доработал нотацию Штейнгауза, которая была ограничена тем, что, если бы потребовалось записать числа много большие мегистона, то возникли бы трудности и неудобства, так как пришлось бы рисовать множество кругов один внутри другого. Мозер предложил после квадратов рисовать не круги, а пятиугольники, затем шестиугольники и так далее. Также он предложил формальную запись для этих многоугольников, чтобы можно было записывать числа, не рисуя сложных рисунков. Нотация Мозера выглядит так:

« треугольнике» = = ;
« в квадрате» = = « в треугольниках» = ;
« в пятиугольнике» = = « в квадратах» = ;
« в -угольнике» = = « в -угольниках» = .

Таким образом, по нотации Мозера штейнгаузовский «мега» записывается как , «медзон» как , а «мегистон» как . Кроме того, Лео Мозер предложил называть многоугольник с числом сторон равным меге - «мегагоном». И предложил число « в мегагоне», то есть . Это число стало известным как число Мозера или просто как «мозер».

Но даже и «мозер» не самое большое число. Итак, самым большим числом, когда-либо применявшимся в математическом доказательстве, является «число Грэма». Впервые это число было использовано американским математиком Рональдом Грэмом (Ronald Graham) в 1977 году при доказательстве одной оценки в теории Рамсея, а именно при подсчёте размерности определённых -мерных бихроматических гиперкубов. Известность же число Грэма получило лишь после рассказа о нём в вышедшей в 1989 году книге Мартина Гарднера «От мозаик Пенроуза к надёжным шифрам».

Чтобы объяснить, как велико число Грэма, придётся объяснить ещё один способ записи больших чисел, введённый Дональдом Кнутом в 1976 году. Американский профессор Дональд Кнут придумал понятие сверхстепень, которое предложил записывать стрелками, направленными вверх.

Обычные арифметические операции - сложение, умножение и возведение в степень - естественным образом могут быть расширены в последовательность гипероператоров следующим образом.

Умножение натуральных чисел может быть определено через повторно производимую операцию сложения («сложить копий числа »):

Например,

Возведение числа в степень может быть определено как повторно производимая операция умножения («перемножить копий числа »), и в обозначениях Кнута эта запись выглядит как одиночная стрелочка, указывающая вверх:

Например,

Такая одиночная стрелка вверх использовалась в качестве значка степени в языке программирования Алгол.

Например,

Здесь и далее вычисление выражения всегда идёт справа налево, также и стрелочные операторы Кнута (как и операция возведение в степень) по определению обладают правой ассоциативностью (очерёдностью справа налево). Согласно данному определению,

Уже это приводит к довольно большим числам, но система обозначений на этом не заканчивается. Оператор «тройная стрелочка» используется для записи повторного возведения в степень оператора «двойная стрелочка» (также известного как «пентация»):

Затем оператора «четверная стрелочка»:

И т. д. Общее правило оператор «-я стрелочка», в соответствии с правой ассоциативностью, продолжается вправо в последовательную серию операторов « стрелочка». Символически это можно записать следующим образом,

Например:

Форма обозначения обычно используется для записи с стрелочками.

Некоторые числа настолько большие, что даже запись стрелочками Кнута становится слишком громоздкой; в этом случае использование оператора -стрелочка предпочтительней (и также для описания с изменяемым числом стрелочек), или эквивалентно, гипероператорам. Но некоторые числа настолько огромны, что даже подобная запись недостаточна. Например, число Грэма.

При использовании Стрелочной нотации Кнута число Грэма может быть записано как

Где количество стрелок в каждом слое, начиная с верхнего, определяется числом в следующем слое, то есть , где , где верхний индекс у стрелки показывает общее количество стрелок. Другими словами, вычисляется в шага: на первом шаге мы вычисляем с четырьмя стрелками между тройками, на втором - с стрелками между тройками, на третьем - с стрелками между тройками и так далее; в конце мы вычисляем с стрелок между тройками.

Это может быть записано как , где , где верхний индекс у означает итерации функций.

Если другим числам с «именами» можно подобрать соответствующее число объектов (например, количество звезд в видимой части Вселенной оценивается в секстильонов - , а количество атомов, из которых состоит земной шар имеет порядок додекальонов), то гугол уже «виртуальный», не говоря уже об числе Грэма. Масштаб только первого члена настолько велик, что его практически невозможно осознать, хотя запись выше относительно проста для понимания. Хотя - это всего лишь количество башен в этой формуле для , уже это число много больше количества объёмов Планка (наименьший возможный физический объём), которые содержатся в наблюдаемой вселенной (примерно ). После первого члена нас ожидают ещё члена стремительно растущей последовательности.

В названиях арабских чисел каждая цифра принадлежит своему разряду, а каждые три цифры образуют класс. Таким образом, последняя цифра в числе обозначает количество единиц в нем и называется, соответственно, разрядом единиц. Следующая, вторая с конца, цифра обозначает десятки (разряд десятков), и третья с конца цифра указывает на количество сотен в числе – разряд сотен. Дальше разряды точно также по очереди повторяются в каждом классе, обозначая уже единицы, десятки и сотни в классах тысяч, миллионов и так далее. Если число небольшое и в нем нет цифры десятков или сотен, принято принимать их за ноль. Классы группируют цифры в числах по три, нередко в вычислительных приборах или записях между классами ставится точка или пробел, чтобы визуально разделить их. Это сделано для упрощения чтения больших чисел. Каждый класс имеет свое название: первые три цифры – это класс единиц, далее идет класс тысяч, затем миллионов, миллиардов (или биллионов) и так далее.

Поскольку мы пользуемся десятичной системой исчисления, то основная единица измерения количества – это десяток, или 10 1 . Соответственно с увеличением количества цифр в числе, увеличивается и количество десятков 10 2 ,10 3 ,10 4 и т.д. Зная количество десятков можно легко определить класс и разряд числа, например, 10 16 – это десятки квадриллионов, а 3×10 16 – это три десятка квадриллионов. Разложение чисел на десятичные компоненты происходит следующий образом – каждая цифра выводится в отдельное слагаемое, умножаясь на требуемый коэффициент 10 n , где n – положение цифры по счет слева направо.
Например: 253 981=2×10 6 +5×10 5 +3×10 4 +9×10 3 +8×10 2 +1×10 1

Также степень числа 10 используется и в написании десятичных дробей : 10 (-1) – это 0,1 или одна десятая. Аналогичным образом с предыдущим пунктом, можно разложить и десятичное число, n в таком случае будет обозначать положение цифры от запятой справа налево, например: 0,347629= 3×10 (-1) +4×10 (-2) +7×10 (-3) +6×10 (-4) +2×10 (-5) +9×10 (-6)

Названия десятичных чисел. Десятичные числа читаются по последнему разряду цифр после запятой, например 0,325 – триста двадцать пять тысячных, где тысячные – это разряд последней цифры 5 .

Таблица названий больших чисел, разрядов и классов

1-й класс единицы 1-й разряд единицы
2-й разряд десятки
3-й разряд сотни
1 = 10 0
10 = 10 1
100 = 10 2
2-й класс тысячи 1-й разряд единицы тысяч
2-й разряд десятки тысяч
3-й разряд сотни тысяч
1 000 = 10 3
10 000 = 10 4
100 000 = 10 5
3-й класс миллионы 1-й разряд единицы миллионов
2-й разряд десятки миллионов
3-й разряд сотни миллионов
1 000 000 = 10 6
10 000 000 = 10 7
100 000 000 = 10 8
4-й класс миллиарды 1-й разряд единицы миллиардов
2-й разряд десятки миллиардов
3-й разряд сотни миллиардов
1 000 000 000 = 10 9
10 000 000 000 = 10 10
100 000 000 000 = 10 11
5-й класс триллионы 1-й разряд единицы триллионов
2-й разряд десятки триллионов
3-й разряд сотни триллионов
1 000 000 000 000 = 10 12
10 000 000 000 000 = 10 13
100 000 000 000 000 = 10 14
6-й класс квадриллионы 1-й разряд единицы квадриллионов
2-й разряд десятки квадриллионов
3-й разряд десятки квадриллионов
1 000 000 000 000 000 = 10 15
10 000 000 000 000 000 = 10 16
100 000 000 000 000 000 = 10 17
7-й класс квинтиллионы 1-й разряд единицы квинтиллионов
2-й разряд десятки квинтиллионов
3-й разряд сотни квинтиллионов
1 000 000 000 000 000 000 = 10 18
10 000 000 000 000 000 000 = 10 19
100 000 000 000 000 000 000 = 10 20
8-й класс секстиллионы 1-й разряд единицы секстиллионов
2-й разряд десятки секстиллионов
3-й разряд сотни секстиллионов
1 000 000 000 000 000 000 000 = 10 21
10 000 000 000 000 000 000 000 = 10 22
1 00 000 000 000 000 000 000 000 = 10 23
9-й класс септиллионы 1-й разряд единицы септиллионов
2-й разряд десятки септиллионов
3-й разряд сотни септиллионов
1 000 000 000 000 000 000 000 000 = 10 24
10 000 000 000 000 000 000 000 000 = 10 25
100 000 000 000 000 000 000 000 000 = 10 26
10-й класс октиллион 1-й разряд единицы октиллионов
2-й разряд десятки октиллионов
3-й разряд сотни октиллионов
1 000 000 000 000 000 000 000 000 000 = 10 27
10 000 000 000 000 000 000 000 000 000 = 10 28
100 000 000 000 000 000 000 000 000 000 = 10 29

Отвечая на такой нелегкий вопрос, какое оно, самое большое число в мире, сначала следует отметить, что на сегодняшний день присутствуют 2 принятых способа наименования чисел – английская и американская. Согласно английской системе, к каждому большому числу по очередности добавляются суффиксы –иллиард или –иллион, в результате чего образуются числа миллион, миллиард, триллион, триллиард и так далее. Если исходить из американской системы, то согласно ей, к каждому большому числу необходимо добавлять суффикс –иллион, в результате чего образуются числа триллион, квадриллион и большие. Здесь же необходимо отметить, что английская система исчисления является более распространенной в современном мире, а имеющиеся в ней числа являются вполне достаточными для нормального функционирования всех систем нашего мира.

Конечно, ответ на вопрос о самом большом числе с логической точки зрения, не может быть однозначным, ведь стоит только прибавить к каждой последующей цифре единицу, то получается уже новое большее число, следовательно, этот процесс не имеет своего предела. Однако, как ни странно, самое большое число в мире все-таки имеется и оно занесено в Книгу рекордов Гиннеса.

Число Грэма – самое большое число в мире

Именно это число признано в мире самым большим в Книге рекордов, при этом весьма трудно объяснить, что же оно из себя представляет и насколько оно велико. В общем смысле, это тройки, умноженные между собой, в результате чего образуется число, которое на 64 порядка стоит выше точки понимания каждого человека. В результате мы можем привести лишь заключительные 50 цифр числа Грэма 0322234872396701848518 64390591045756272 62464195387.

Число Гугола

История возникновения этого числа является не столь сложной, как вышеназванного. Так математик из Америки Эдвард Казнер, разговаривая со своими племянниками о больших цифрах, не смог ответить на вопрос, как называть числа, у которых 100 нулей и более. Находчивый племянник предложил таким числам свое название – гугол. Следует отметить, что большого практического значения это число не имеет, однако, он иногда используется в математике для выражения бесконечности.

Гуглоплекс

Данное число также придумано математиком Эдвардом Казнером и его племянником Милтоном Сироттой. В общем смысле оно представляет собой число в десятой степени гугол. Отвечая на вопрос многих любознательных натур, сколько нулей в гуглоплексе, стоит отметить, что в классическом варианте это число представить не составляет никакой возможности, даже если исписать всю бумагу, имеющуюся на планете классическими нулями.

Число Скьюза

Еще одним претендентом на звание самого большого числа является число Скьюза, доказанное Джоном Литтвудом в 1914 году. Согласно приведенным доказательствам, это число приблизительно составляет 8,185·10370.

Число Мозера

Это метод названия очень больших чисел был придуман Гуго Штейнгаузом, который предложил обозначать их многоугольниками. В результате трех проведенных математических операций рождается число 2 в мегагоне (многоугольнике с мегой сторон).

Как можно уже заметить, огромное количество математиков прилагало усилия для того, чтобы найти его – наибольшее число в мире. Насколько эти попытки увенчались успехом, конечно, судить не нам, однако, нельзя не отметить, что реальная применимость таких чисел сомнительна, ведь они не поддаются даже человеческому пониманию. К тому же всегда найдется то число, которое будет больше, если совершить совсем легкую математическую операцию +1.