Круги эйлера объяснение. Отношения между понятиями. круги эйлера. Решение логических задач с помощью кругов Эйлера

28 мая 2015

Леонард Эйлер (1707-1783) - известный швейцарский и российский математик, член Петербургской академии наук, бо́льшую часть жизни прожил в России. Наиболее известным в математическом анализе, статистике, информатике и логике считается круг Эйлера (диаграмма Эйлера-Венна), используемый для обозначения объема понятий и множеств элементов.

Джон Венн (1834-1923) - английский философ и логик, соавтор диаграммы Эйлера-Венна.

Совместимые и несовместимые понятия

Под понятием в логике подразумевается форма мышления, отражающая существенные признаки класса однородных предметов. Они обозначаются одним либо группой слов: «карта мира», «доминантовый квинтсептаккорд», «понедельник» и др.

В случае когда элементы объема одного понятия полностью или частично принадлежат объему другого, говорят о совместимых понятиях. Если же ни один элемент объема определенного понятия не принадлежит к объему другого, мы имеем место с несовместимыми понятиями.

В свою очередь, каждый из видов понятий имеет собственный набор возможных отношений. Для совместимых понятий это следующие:

  • тождество (равнозначность) объемов;
  • пересечение (частичное совпадение) объемов;
  • подчинение (субординация).

Для несовместимых:

  • соподчинение (координация);
  • противоположность (контрарность);
  • противоречие (контрадикторность).

Схематически отношения между понятиями в логике принято обозначать при помощи кругов Эйлера-Венна.

Отношения равнозначности

В данном случае понятия подразумевают один и тот же предмет. Соответственно, объемы данных понятий полностью совпадают. Например:

А - Зигмунд Фрейд;

В - основоположник психоанализа.

А - квадрат;

В - равносторонний прямоугольник;

С - равноугольный ромб.

Для обозначения используются полностью совпадающие круги Эйлера.

Пересечение (частичное совпадение)

А - педагог;

В - меломан.

Как видно из данного примера, объемы понятий частично совпадают: определенная группа педагогов может оказаться меломанами, и наоборот - среди меломанов могут быть представители педагогической профессии. Аналогичное отношение будет в случае, когда в качестве понятия А выступает, например, «горожанин», а в качестве В - «автоводитель».

Подчинение (субординация)

Схематически обозначаются как разные по масштабу круги Эйлера. Отношения между понятиями в данном случае характеризуются тем, что подчиненное понятие (меньшее по объему) полностью входит в состав подчиняющего (большего по объему). При этом подчиненное понятие не исчерпывает полностью подчиняющее.

Например:

А - дерево;

В - сосна.

Понятие В будет являться подчиненным по отношению к понятию А. Так как сосна относится к деревьям, то понятие А становится в данном примере подчиняющим, «поглощающим» объем понятия В.

Соподчинение (координация)

Отношение характеризует два и более понятия, исключающих друг друга, но принадлежащих при этом определенному общему родовому кругу. Например:

А - кларнет;

В - гитара;

С - скрипка;

D - музыкальный инструмент.

Понятия А, В, С не являются пересекающимися по отношению друг к другу, тем не менее, все они относятся к категории музыкальных инструментов (понятие D).

Противоположность (контрарность)

Противоположные отношения между понятиями подразумевают отнесенность данных понятий к одному и тому же роду. При этом одно из понятий обладает определенными свойствами (признаками), в то время как другое их отрицает, замещая противоположными по характеру. Таким образом, мы имеем дело с антонимами. Например:

А - карлик;

В - великан.

Круг Эйлера при противоположных отношениях между понятиями разделяется на три сегмента, первый из которых соответствует понятию А, второй - понятию В, а третий - всем остальным возможным понятиям.

Противоречие (контрадикторность)

В данном случае оба понятия представляют собой виды одного и того же рода. Как и в предыдущем примере, одно из понятий указывает на определенные качества (признаки), в то время как другое их отрицает. Однако, в отличие от отношения противоположности, второе, противоположное понятие, не заменяет отрицаемые свойства другими, альтернативными. Например:

А - сложная задача;

В - несложная задача (не-А).

Выражая объем понятий подобного рода, круг Эйлера разделяется на две части - третьего, промежуточного звена в данном случае не существует. Таким образом, понятия также являются антонимами. При этом одно из них (А) становится положительным (утверждающим какой-либо признак), а второе (В или не-А) - отрицательным (отрицающим соответствующий признак): «белая бумага» - «не белая бумага», «отечественная история» - «зарубежная история» и т. д.

Таким образом, соотношение объемов понятий по отношению друг к другу является ключевой характеристикой, определяющей круги Эйлера.

Отношения между множествами

Также следует различать понятия элементов и множества, объем которых отображают круги Эйлера. Понятие множества заимствовано из математической науки и имеет достаточно широкое значение. Примеры в логике и математике отображают его как некую совокупность объектов. Сами же объекты являются элементами данного множества. «Множество есть многое, мыслимое как единое» (Георг Кантор, основатель теории множеств).

Обозначение множеств осуществляется заглавными буквами: А, В, С, D… и т. д., элементов множеств - строчными: а, b, с, d…и др. Примерами множества могут быть студенты, находящиеся в одной аудитории, книги, стоящие на определенной полке (или, например, все книги в какой-либо определенной библиотеке), страницы в ежедневнике, ягоды на лесной поляне и т. д.

В свою очередь, если определенное множество не содержит ни одного элемента, то его называют пустым и обозначают знаком Ø. Например, множество точек пересечения параллельных прямых, множество решений уравнения х 2 = -5.

Решение задач

Для решения большого количества задач активно используются круги Эйлера. Примеры в логике наглядно демонстрируют связь логических операций с теорией множеств. При этом используются таблицы истинности понятий. Например, круг, обозначенный именем А, представляет собой область истинности. Таким образом, область вне круга будет представлять ложь. Чтобы определить область диаграммы для логической операции, следует заштриховать области, определяющие круг Эйлера, в которых ее значения для элементов А и В будут истинны.

Использование кругов Эйлера нашло широкое практическое применение в разных отраслях. Например, в ситуации с профессиональным выбором. Если субъект озабочен выбором будущей профессии, он может руководствоваться следующими критериями:

W - что я люблю делать?

D - что у меня получается?

P - чем я смогу хорошо зарабатывать?

Изобразим это в виде схемы: круги Эйлера (примеры в логике - отношение пересечения):

Результатом станут те профессии, которые окажутся на пересечении всех трех кругов.

Отдельное место круги Эйлера-Венна занимают в математике (теория множеств) при вычислении комбинаций и свойств. Круги Эйлера множества элементов заключены в изображении прямоугольника, обозначающего универсальное множество (U). Вместо кругов также могут использоваться другие замкнутые фигуры, но суть от этого не меняется. Фигуры пересекаются между собой, согласно условиям задачи (в наиболее общем случае). Также данные фигуры должны быть обозначены соответствующим образом. В качестве элементов рассматриваемых множеств могут выступать точки, расположенные внутри различных сегментов диаграммы. На ее основе можно заштриховать конкретные области, обозначив тем самым вновь образованные множества.

С данными множествами допустимо выполнение основных математических операций: сложение (сумма множеств элементов), вычитание (разность), умножение (произведение). Кроме того, благодаря диаграммам Эйлера-Венна можно проводить операции сравнения множеств по числу входящих в них элементов, не считая их.

Леонард Эйлер – величайший из математиков,написал более 850 научных работ. В одной из них и появились эти круги.

Учёный писал, что «они очень подходят для того, чтобы облегчить наши размышления».

Круги Эйлера – это геометрическая схема, которая помогает находить и/или делать более наглядными логические связи между явлениями и понятиями. А также помогает изобразить отношения между каким-либо множеством и его частью.

Задача 1

Из 90 туристов, отправляющихся в путешествие, немецким языком владеют 30 человек, английским – 28 чел, французским – 42 чел. Английским и немецким одновременно владеют 8 человек, английским и французским -10 чел, немецким и французским – 5 чел, всеми тремя языками – 3 чел. Сколько туристов не владеют ни одним языком?

Решение:

Покажем условие задачи графически – с помощью трёх кругов

Ответ: 10 человек.

Задача 2

Многие ребята нашего класса любят футбол, баскетбол и волейбол. А некоторые - даже два или три из этих видов спорта. Известно, что 6 человек из класса играют только в волейбол, 2 – только в футбол, 5 – только в баскетбол. Только в волейбол и футбол умеют играть 3 человека, в футбол и баскетбол – 4, в волейбол и баскетбол – 2. Один человек из класса умеет играть во все игры, 7 не умеют играть ни в одну игру. Требуется найти:

Сколько всего человек в классе?

Сколько человек умеют играть в футбол?

Сколько человек умеют играть в волейбол?


Задача 3

В детском лагере отдыхало 70 ребят. Из них 20 занимаются в драмкружке, 32 поют в хоре, 22 увлекаются спортом. В драмкружке 10 ребят из хора, в хоре 6 спортсменов, в драмкружке 8 спортсменов, а 3 спортсмена посещают и драмкружок, и хор. Сколько ребят не поют в хоре, не увлекаются спортом и не занимаются в драмкружке? Сколько ребят заняты только спортом?

Задача 4

Из сотрудников фирмы 16 побывали во Франции, 10 – в Италии, 6 – в Англии. В Англии и Италии – пятеро, в Англии и Франции – 6, во всех трёх странах – 5 сотрудников. Сколько человек посетили и Италию, и Францию, если всего в фирме работает 19 человек, и каждый их них побывал хотя бы в одной из названных стран?

Задача 5

Шестиклассники заполняли анкету с вопросами об их любимых мультфильмах. Оказалось, что большинству из них нравятся «Белоснежка и семь гномов», «Губка Боб Квадратные Штаны» и «Волк и теленок». В классе 38 учеников. «Белоснежка и семь гномов» нравится 21 ученику. Причем трем среди них нравятся еще и «Волк и теленок», шестерым - «Губка Боб Квадратные Штаны», а один ребенок одинаково любит все три мультфильма. У «Волка и теленка» 13 фанатов, пятеро из которых назвали в анкете два мультфильма. Надо определить, скольким же шестиклассникам нравится «Губка Боб Квадратные Штаны».

Задачи для решения учащимися

1. В классе 35 учеников. Все они являются читателями школьной и район­ной библиотек. Из них 25 берут книги в школьной библиотеке, 20 - в рай­онной. Сколько из них:

а) не являются читателями школь­ной библиотеки;

б) не являются читателями район­ной библиотеки;

в) являются читателями только школьной библиотеки;

г) являются читателями только рай­онной библиотеки;

д) являются читателями обеих библиотек?

2.Каждый ученик в классе изучает английский или немецкий язык, или оба этих языка. Английский язык изучают 25 человек, немецкий - 27 человек, а тот и другой - 18 человек. Сколько всего учеников в классе?

3.На листе бумаги начертили круг площадью 78 см2 и квадрат площадью 55 см2. Площадь пересечения круга и квадрата равна 30 см2. Не занятая кру­гом и квадратом часть листа имеет пло­щадь 150 см2. Найдите площадь листа.

4. В группе туристов 25 человек. Среди них 20 человек моложе 30 лет и 15 человек старше 20 лет. Может ли так быть? Если может, то в каком случае?

5. В детском саду 52 ребенка. Каж­дый из них любит пирожное или моро­женое, или то и другое. Половина де­тей любит пирожное, а 20 человек - пирожное и мороженое. Сколько де­тей любит мороженое?

6. В классе 36 человек. Ученики это­го класса посещают математический, физический и химический кружки, причем математический кружок по­сещают 18 человек, физический - 14, химический - 10. Кроме того, извест­но, что 2 человека посещают все три кружка, 8 человек -.и математиче­ский, и физический, 5 - и математи­ческий, и химический, 3 - и физи­ческий, и химический кружки. Сколько учеников класса не посещают ни­какие кружки?

7. После каникул классный руково­дитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников двое не были ни в кино, ни в театре, ни в цирке. В кино побы­вали 25 человек; в театре - 11; в цир­ке - 17; и в кино, и в театре - 6; и в кино, и в цирке - 10; и в театре, и в цирке - 4. Сколько человек побы­вали в театре, кино и цирке одновре­менно?

Решение задач ЕГЭ с помощью кругов Эйлера

Задача 1

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» - символ «&».

Крейсер & Линкор ? Считается, что все вопросы выполняются практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Запрос Найдено страниц (в тысячах)
Крейсер | Линкор 7000
Крейсер 4800
Линкор 4500

Решение:

При помощи кругов Эйлера изобразим условия задачи. При этом цифры 1, 2 и 3 используем, чтобы обозначить полученные в итоге области.

Опираясь на условия задачи, составим уравнения:

  1. Крейсер | Линкор: 1 + 2 + 3 = 7000
  2. Крейсер: 1 + 2 = 4800
  3. Линкор: 2 + 3 = 4500

Чтобы найти Крейсер & Линкор (обозначенный на чертеже как область 2), подставим уравнение (2) в уравнение (1) и выясним, что:

4800 + 3 = 7000, откуда получаем 3 = 2200.

Теперь этот результат мы можем подставить в уравнение (3) и выяснить, что:

2 + 2200 = 4500, откуда 2 = 2300.

Ответ: 2300 - количество страниц, найденных по запросу Крейсер & Линкор.

Задача 2

В языке запросов поискового сервера для обозначения

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.
Запрос
Найдено страниц (в тысячах)
Торты | Пироги
12000
Торты & Пироги
6500
Пироги
7700

Какое количество страниц (в тысячах) будет найдено по запросу Торты ?



Решение

Для решения задачи отобразим множества Тортов и Пирогов в виде кругов Эйлера.

А , Б , В ).

Из условия задачи следует:

Торты │Пироги = А + Б + В = 12000

Торты & Пироги = Б = 6500

Пироги = Б + В = 7700

Чтобы найти количество Тортов (Торты = А + Б ), надо найти сектор А Торты│Пироги ) отнимем множество Пироги.

Торты│Пироги – Пироги = А + Б + В -(Б + В ) = А = 1200 – 7700 = 4300

Сектор А равен 4300, следовательно

Торты = А + Б = 4300+6500 = 10800

Задача 3

|", а для логической операции "И" - символ "&".

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.
Запрос
Найдено страниц (в тысячах)
Пироженое & Выпечка
5100
Пироженое
9700
Пироженое | Выпечка
14200

Какое количество страниц (в тысячах) будет найдено по запросуВыпечка ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Решение

Для решения задачи отобразим множества Пироженых и Выпечек в виде кругов Эйлера.

Обозначим каждый сектор отдельной буквой (А , Б , В ).

Из условия задачи следует:

Пироженое & Выпечка = Б = 5100

Пироженое = А + Б = 9700

Пироженое │ Выпечка = А + Б + В = 14200

Чтобы найти количество Выпечки (Выпечка = Б + В ), надо найти сектор В , для этого из общего множества (Пироженое │ Выпечка) отнимем множество Пироженое .

Пироженое │ Выпечка – Пироженное = А + Б + В -(А + Б ) = В = 14200–9700 = 4500

Сектор В равен 4500, следовательноВыпечка = Б + В = 4500+5100 = 9600

Задача 4
убывания
Для обозначения
логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".
Решение

Представим множества овчарок, терьеров и спаниелей в виде кругов Эйлера, обозначим сектора буквами (А , Б , В , Г ).

с паниели │(терьеры & овчарки) = Г + Б

с паниели│овчарки = Г + Б + В

спаниели│терьеры│овчарки = А + Б + В + Г

терьеры & овчарки = Б

Расположим номера запросов в порядке убывания количества страниц: 3 2 1 4

Задача 5

В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.
Для обозначения логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".

1
барокко | классицизм | ампир
2
барокко | (классицизм & ампир)
3
классицизм & ампир
4
барокко | классицизм

Решение

Представим множества классицизм, ампир и классицизм в виде кругов Эйлера, обозначим сектора буквами (А , Б , В , Г ).

Преобразим условие задачи в виде суммы секторов:

барокко│ классицизм │ампир = А + Б + В + Г
барокко │(классицизм & ампир) = Г + Б

классицизм & ампир = Б
барокко│ классицизм = Г + Б + А

Из сумм секторов мы видим какой запрос выдал больше количества страниц.

Расположим номера запросов в порядке возрастания количества страниц: 3 2 4 1



Задача 6
В таблице приведены запросы к поисковому серверу. Расположите номера запросов в порядке возрастания количества страниц, которые найдет поисковый сервер по каждому запросу.
Для обозначения
логической операции "ИЛИ" используется символ " |", а для логической операции "И" - символ "&".
1
канарейки | щеглы | содержание
2
канарейки & содержание
3
канарейки & щеглы & содержание
4
разведение & содержание & канарейки & щеглы

Решение

Для решения задачи представим запросы в виде кругов Эйлера.

K - канарейки,

Щ – щеглы,

Р – разведение.

канарейки | терьеры | содержание канарейки & содержание канарейки & щеглы & содержание разведение & содержание & канарейки & щеглы








Самая большая область закрашенных секторов у первого запроса, затем у второго, затем у третьего, а у четвертого запроса самый маленький.

В порядке возрастания по количеству страниц запросы будут представлены в следующем порядке: 4 3 2 1

Обратите внимание что в первом запросе закрашенные сектора кругов Эйлера содержат в себе закрашенные сектора второго запроса, а закрашенные сектора второго запроса содержат закрашенные сектора третьего запроса, закрашенные сектора третьего запроса содержат закрашенный сектор четвертого запроса.

Только при таких условиях мы можем быть уверены, что правильно решили задачу.

Задача 7 (ЕГЭ 2013)

В языке запросов поискового сервера для обозначения логической операции «ИЛИ» используется символ «|», а для логической операции «И» – символ «&».

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц
(в тысячах)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?
Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.
Логика. Учебное пособие Гусев Дмитрий Алексеевич

1.6. Круговые схемы Эйлера

1.6. Круговые схемы Эйлера

Как мы уже знаем, в логике выделяется шесть вариантов отношений между понятиями. Два любых сравнимых понятия обязательно находятся в одном из этих отношений. Например, понятия писатель и россиянин находятся в отношении пересечения, писатель и человек – подчинения, Москва и столица России – равнозначности, Москва и Петербург – соподчинения, мокрая дорога и сухая дорога – противоположности, Антарктида и материк – подчинения, Антарктида и Африка – соподчинения и т. д. и т. п.

Надо обратить внимание на то, что если два понятия обозначают часть и целое, например месяц и год , то они находятся в отношении соподчинения, хотя может показаться, что между ними отношение подчинения, ведь месяц входит в год. Однако, если бы понятия месяц и год были подчиненными, то тогда надо было бы утверждать, что месяц – это обязательно год, а год – это не обязательно месяц (вспомним отношение подчинения на примере понятий карась и рыба : карась – это обязательно рыба, но рыба – это не обязательно карась). Месяц – это не год, а год – это не месяц, но и то, и другое – отрезок времени, следовательно, понятия месяц и год, так же, как и понятия книга и страница книги, автомобиль и колесо автомобиля, молекула и атом и т. п., находятся в отношении соподчинения, т. к. часть и целое – не то же самое, что вид и род.

В начале говорилось о том, что понятия бывают сравнимыми и несравнимыми. Считается, что рассмотренные шесть вариантов отношений применимы только к сравнимым понятиям. Однако возможно утверждать, что все несравнимые понятия находятся между собой в отношении соподчинения. Например, такие несравнимые понятия, как пингвин и небесное тело возможно рассматривать как соподчиненные, ведь пингвин – это не небесное тело и наоборот, но в то же время объемы понятий пингвин и небесное тело входят в более широкий объем третьего понятия, родового по отношению к ним: это может быть понятие объект окружающего мира или форма материи (ведь и пингвин и небесное тело – это различные объекты окружающего мира или различные формы материи). Если же одно понятие обозначает что-то материальное, а другое – нематериальное (например, дерево и мысль ), то родовым для этих (как возможно утверждать) соподчиненных понятий является понятие форма бытия , т. к. и дерево, и мысль, и что угодно еще – это различные формы бытия.

Как нам уже известно, отношения между понятиями изображаются круговыми схемами Эйлера. Причем до сих пор мы изображали схематично отношения между двумя понятиями, а это можно сделать и с большим количеством понятий. Например, отношения между понятиями боксер, негр и человек

Взаимное расположение кругов показывает, что понятия боксер и негр находятся в отношении пересечения (боксер может быть негром и может им не быть, а также негр может быть боксером и может им не быть), а понятия боксер и человек, так же как и понятия негр и человек находятся в отношении подчинения (ведь любой боксер и любой негр – это обязательно человек, но человек может не быть ни боксером, ни негром).

Рассмотрим отношения между понятиями дедушка, отец, мужчина, человек с помощью круговой схемы:

Как видим, указанные четыре понятия находятся в отношении последовательного подчинения: дедушка – это обязательно отец, а отец – не обязательно дедушка; любой отец – это обязательно мужчина, однако не всякий мужчина является отцом; и, наконец, мужчина – это обязательно человек, но человеком может быть не только мужчина. Отношения между понятиями хищник, рыба, акула, пиранья, щука, живое существо изображаются следующей схемой:

Попробуйте самостоятельно прокомментировать эту схему, установив все имеющиеся на ней виды отношений между понятиями.

Подытоживая сказанное, отметим, что отношения между понятиями – это отношения между их объемами. Значит, для того, чтобы было возможно установить отношения между понятиями, их объем должен быть резким, а содержание, соответственно, ясным, т. е. эти понятия должны быть определенными. Что касается неопределенных понятий, о которых шла речь выше, то установить точные отношения между ними достаточно сложно, фактически невозможно, ведь из-за неясности их содержания и нерезкости объема два каких-нибудь неопределенных понятия можно будет характеризовать как равнозначные или как пересекающиеся, или как подчиняющиеся и т. д. Например, возможно ли установить отношения между неопределенными понятиями неаккуратность и небрежность ? То ли это будет равнозначность, то ли подчинение – точно сказать невозможно. Таким образом, отношения между неопределенными понятиями являются так же неопределенными. Понятно поэтому, что в тех ситуациях интеллектуально-речевой практики, где требуется точность и однозначность в определении отношений между понятиями, использование неопределенных понятий является нежелательным.

Из книги Прозрение автора Ефимов Виктор Алексеевич

Из книги Философия науки и техники автора Стёпин Вячеслав Семенович

Теоретические схемы и абстрактные объекты технической теории Теоретические схемыпредставляют собой совокупность абстрактных объектов, ориентированных, с одной стороны, на применение соответствующего математического аппарата, а с другой, – на мысленный эксперимент,

Из книги Диалектика мифа автора Лосев Алексей Федорович

2. Диалектика схемы, аллегории и символа Какие же возможны вообще виды этого взаимоотношения? Их очень много. Но, следуя Шеллингу, можно указать три основных таких вида. При этом будем иметь в виду, что наши термины «внутреннее» и «внешнее» – очень общие термины и их можно

Из книги Курс эпохи Водолея. Апокалипсис или возрождение автора Ефимов Виктор Алексеевич

Из книги Избранные труды автора Щедровицкий Георгий Петрович

Из книги Человек среди учений автора Кротов Виктор Гаврилович

Комментарии и схемы Учение, в основе которого лежит внутренняя работа личности, не могло бы пережить саму эту личность без приливов новой внутренней работы новых личностей. Тех, кто увидел для себя особый смысл в этом учении. Меняются условия существования, приходит

Из книги Искусство правильно мыслить автора Ивин Александр Архипович

СХЕМЫ ПРАВИЛЬНЫХ РАССУЖДЕНИЙ Вот два примера дедуктивных выводов из рассказа русского юмориста начала века В. Билибина. «Если бы на свете не существовало солнца, то пришлось бы постоянно жечь свечи и керосин. Если бы пришлось постоянно жечь свечи и керосин, то чиновникам

Из книги Этика любви и метафизика своеволия: Проблемы нравственной философии. автора Давыдов Юрий Николаевич

Нравственная философия Толстого и Достоевского в рамках ницшеанской схемы нигилизма Начиная с последней четверти прошлого века проблема нигилизма выходит на одно из первых мест в числе важнейших проблем западноевропейской философии. Своим «статусом» она прежде всего

Из книги Нормы в пространстве языка автора Федяева Наталья Дмитриевна

2.1.1. Нормы-схемы речевого общения: речевой этикет Выбор первой проблемной области – речевого этикета – обусловлен следующим. При определении сущностных характеристик нормы мы начали движение от социальных норм, при этом заметили, что их существование в полной мере

Из книги Спиральная динамика [Управляя ценностями, лидерством и изменениями в XXI веке] автора Бек Дон

2.1.2. Семиотически закрепленные нормы-схемы: жанры Основой противопоставления социально и семиотически закрепленных норм, как было сказано в главе I, является способ их закрепления в социокультурной практике. Первые – неписаные законы – становятся программами, схемами

Из книги Логика и аргументация: Учебн. пособие для вузов. автора Рузавин Георгий Иванович

Из книги Архитектура и иконография. «Тело символа» в зеркале классической методологии автора Ванеян Степан С.

9.1. Графические схемы структуры аргументации Всякая аргументация начинается с установления и обсуждения некоторых фактов, которые в дальнейшем будут называться данными, и с помощью которых выдвигается и обосновывается некоторое заключение. Кроме того, для перехода от

Из книги автора

Иконография как система методов: схемы и угрозы Сама практика иконографического анализа сформировала «проверенную схему» последовательных исследовательских действий. Схема подразумевает:– уяснение исторического значения мотива – с точки зрения времени (момент

Если Вы считаете, что ничего не знаете о таком понятии, как круги Эйлера, то вы глубоко заблуждаетесь. Еще из младшей школы известны схематические изображения, или кружки, позволяющие наглядно осмыслить взаимоотношения между понятиями и элементами системы.

Метод, придуманный Леонардом Эйлером, использовался ученым для решения сложных математических задач. Кругами он изображал множества и сделал эту схему основой такого понятия, как символическая . Метод призван максимально упростить рассуждения, направленные на решении той или иной задачи, именно поэтому методика активно используется как в младшей школе, так и в академической среде. Интересно, что подобный подход был ранее использован немецким философом Лейбницем, а позже был подхвачен и применен в различных модификациях известными умами в области математики. Например, прямоугольные схемы чешского Больцано, Шредера, Венна, известного созданием популярной диаграммы, основанной на этом простом, но удивительно действенном методе.

Круги являются основой так называемых «наглядных интернет мемов», которые основаны на схожести признаков отдельных множеств. Забавно, наглядно, а главное понятно.

Круги мысли

Круги позволяют наглядно описать условия задачи и мгновенно принять верное решение, или выявить направление движение в сторону правильного ответа. Как правило, круги Эйлера используются для решения логико-математических задач, связанных с множествами, их объединениями или частичными наложениями. В пересечение кругов попадают объекты, обладающие свойствами каждого из изображенных кружком множеств. Объекты, не вошедшие в множество, находятся за пределами того или иного круга. Если понятия абсолютно равнозначны, они обозначаются одним кругом, представляющим собой объединение двух множеств, имеющих равные свойства и объемы.

Логика взаимосвязей

Используя круги Эйлера, вы можете решить ряд бытовых задач и даже определиться с выбором будущей профессии, стоит лишь проанализировать свои возможности и желания и выбрать их максимальное пересечение.

Теперь становится ясно, что круги Эйлера вовсе не абстрактное математическое и философское понятие из разряда теоретических знаний, они имеют весьма прикладное и практическое значение, позволяя разобраться не только с простейшими математическими проблемами, но и решить важные жизненные дилеммы наглядным и понятным каждому способом.

Круги Эйлера – это геометрическая схема. С ее помощью можно изобразить отношения между подмножествами (понятиями), для наглядного представления.

Способ изображения понятий в виде кругов позволяет развивать воображение и логическое мышление не только детям, но и взрослым. Начиная с 4-5 лет детям доступно решение простейших задач с кругами Эйлера, сначала с разъяснениями взрослых, а потом и самостоятельно. Овладение методом решения задач с помощью кругов Эйлера формирует у ребенка способность анализировать, сопоставлять, обобщать и группировать свои знания для более широкого применения.

Пример

На рисунке представлено множество – все возможные игрушки. Некоторые из игрушек являются конструкторами – они выделены в отдельный овал. Это часть большого множества «игрушки» и одновременно отдельное множество (ведь конструктором может быть и «Лего», и примитивные конструкторы из кубиков для малышей). Какая-то часть большого множества «игрушки» может быть заводными игрушками. Они не конструкторы, поэтому мы рисуем для них отдельный овал. Желтый овал «заводной автомобиль» относится одновременно к множеству «игрушки» и является частью меньшего множества «заводная игрушка». Поэтому и изображается внутри обоих овалов сразу.

Вот несколько задач для маленьких детей на логическое мышление:

  • Определить круги, которые подходят к описанию предмета. При этом желательно обратить внимание на те качества, которыми предмет обладает постоянно и которыми временно. Например, стеклянный стакан с соком всегда остается стеклянным, но сок в нем есть не всегда. Или существует какое-то обширное определение, которое включает в себя разные понятия, подобную классификацию тоже можно изобразить с помощью кругов Эйлера. Например, виолончель – это музыкальный инструмент, но не каждый музыкальный инструмент окажется виолончелью.




Для детей постарше можно предлагать варианты задач с вычислениями – от достаточно простых до совсем сложных. Причем самостоятельное придумывание этих задач для детей обеспечит родителям очень хорошую разминку для ума.

  • 1. Из 27 пятиклассников все изучают иностранные языки – английский и немецкий. 12 изучают немецкий язык, а 19 – английский. Необходимо определить, сколько пятиклассников заняты изучением двух иностранных языков; сколько не изучают немецкий; сколько не изучают английский; сколько изучают только немецкий и только английский?

При этом первый вопрос задачи намекает в целом на путь к решению этой задачи, сообщая, что некоторые школьники изучают оба языка, и в этом случае использование схемы также упрощает понимание задачи детьми.


Кстати, если вы не можете определиться, какую профессию выбрать, попробуйте нарисовать схему в виде кругов Эйлера. Возможно, чертеж вроде этого поможет вам определиться с выбором:

Те варианты, которые окажутся на пересечении всех трех кругов, и есть профессия, которая не только сможет вас прокормить, но и будет вам нравиться.

И еще одна табличка...